Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect
- PMID: 5288752
- PMCID: PMC389269
- DOI: 10.1073/pnas.68.8.1678
Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect
Abstract
It is pointed out that translational and (overall) rotational motions provide the important entropic driving force for enzymic and intramolecular rate accelerations and the chelate effect; internal rotations and unusually severe orientational requirements are generally of secondary importance. The loss of translational and (overall) rotational entropy for 2 --> 1 reactions in solution is ordinarily on the order of 45 entropy units (e.u.) (standard state 1 M, 25 degrees C); the translational entropy is much larger than 8 e.u. (corresponding to 55 M). Low-frequency motions in products and transition states, about 17 e.u. for cyclopentadiene dimerization, partially compensate for this loss, but "effective concentrations" on the order of 10(8) M may be accounted for without the introduction of new chemical concepts or terms.
Similar articles
-
Entropy contributions to rate accelerations of intramolecular reactions in water vs non-structured solvents.Biochem Biophys Res Commun. 1973 Feb 5;50(3):839-45. doi: 10.1016/0006-291x(73)91321-1. Biochem Biophys Res Commun. 1973. PMID: 4689081 No abstract available.
-
Contribution of translational and rotational motions to molecular association in aqueous solution.Biophys J. 2001 Sep;81(3):1632-42. doi: 10.1016/S0006-3495(01)75817-1. Biophys J. 2001. PMID: 11509376 Free PMC article.
-
Entropic cost of protein-ligand binding and its dependence on the entropy in solution.J Phys Chem B. 2009 Apr 30;113(17):5871-84. doi: 10.1021/jp809968p. J Phys Chem B. 2009. PMID: 19351118
-
How do enzymes work?Science. 1988 Oct 28;242(4878):533-40. doi: 10.1126/science.3051385. Science. 1988. PMID: 3051385 Review.
-
The hydrophobic effect. 1. A consequence of the mobile order in H-bonded liquids.J Pharm Sci. 1998 Aug;87(8):987-97. doi: 10.1021/js970205e. J Pharm Sci. 1998. PMID: 9687344 Review.
Cited by
-
An intramolecular inverse electron demand Diels-Alder approach to annulated α-carbolines.Beilstein J Org Chem. 2012;8:829-40. doi: 10.3762/bjoc.8.93. Epub 2012 Jun 6. Beilstein J Org Chem. 2012. PMID: 23015831 Free PMC article.
-
Mechanochemical modeling of dynamic microtubule growth involving sheet-to-tube transition.PLoS One. 2011;6(12):e29049. doi: 10.1371/journal.pone.0029049. Epub 2011 Dec 20. PLoS One. 2011. PMID: 22205994 Free PMC article.
-
Energetics of enzyme catalysis.Proc Natl Acad Sci U S A. 1978 Nov;75(11):5250-4. doi: 10.1073/pnas.75.11.5250. Proc Natl Acad Sci U S A. 1978. PMID: 281676 Free PMC article.
-
There's more to enzyme antagonism than inhibition.Bioorg Med Chem. 2023 Mar 15;82:117231. doi: 10.1016/j.bmc.2023.117231. Epub 2023 Mar 5. Bioorg Med Chem. 2023. PMID: 36893527 Free PMC article. Review.
-
Mechanistic insight from thermal activation parameters for oxygenation reactions of different substrates with biomimetic iron porphyrin models for compounds I and II.J Biol Inorg Chem. 2012 Jan;17(1):27-36. doi: 10.1007/s00775-011-0822-7. Epub 2011 Jul 30. J Biol Inorg Chem. 2012. PMID: 21805115
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources