Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1967 Jan;93(1):264-72.
doi: 10.1128/jb.93.1.264-272.1967.

Inducible system for the utilization of beta-glucosides in Escherichia coli. II. Description of mutant types and genetic analysis

Inducible system for the utilization of beta-glucosides in Escherichia coli. II. Description of mutant types and genetic analysis

S Schaefler et al. J Bacteriol. 1967 Jan.

Abstract

Two types of mutants obtained by treating beta-gl(+) cells with nitrosoguanidine are described. One type, beta-gl(+)c, is constitutive for the biosynthesis of the aryl beta-glucoside splitting enzyme(s) and for the beta-glucoside permease; the other (beta-gl(+)sal(-)) has lost the capacity to ferment salicin, but has retained the capacity to ferment arbutin and other aryl beta-glucosides. By two successive mutational steps, beta-gl(+)sal(-)c double mutants can be obtained. Determinations of the enzymatic splitting of salicin and p-nitrophenyl beta-glucoside by beta-gl(+)sal(-) cells and extracts showed that these mutants have lost the capacity to split salicin but do split p-nitrophenyl beta-glucoside; they possess the beta-glucoside permease, and in them salicin is a gratuitous inducer for enzyme and permease biosynthesis. Studies on a beta-gl(+) strain, which splits salicin as well as p-nitrophenyl beta-glucoside, have shown that the splitting of salicin is more temperature-sensitive than that of p-nitrophenyl beta-glucoside and other beta-glucosides. Other properties of the two activities are similar. Interrupted mating experiments and cotransduction with P1kc phage showed that the genetic determinants of the beta-glucoside system map between the pyrE and ile loci. Three distinct mutational sites were found and are presumed to have the following functions: beta-glA, a structural gene for an aryl beta-glucoside splitting enzyme; beta-glB, either the structural gene for the beta-glucoside-permease or a regulatory gene; and beta-glC, a regulatory gene (or site). Escherichia coli wild-type strains are of the genotype A(+) B(-) C(+). The beta-gl(+) mutation determining the ability to ferment beta-glucosides is considered to be a permease or regulatory mutation, and the resulting genotype is A(+) B(+) C(+). The beta-gl(+)sal(-) phenotype results from a mutation in the beta-glA gene (genotype A' B(+) C(+)), and the constitutive phenotype results from a mutation in the beta-glC gene, the genotypes A(+) B(+)C(a) and A' B(+)C(a) corresponding to the phenotypes beta-gl(+)c and beta-gl(+)sal(-)c.

PubMed Disclaimer

References

    1. J Bacteriol. 1967 Jan;93(1):254-63 - PubMed
    1. J Gen Microbiol. 1956 Dec;15(3):529-55 - PubMed
    1. Biochem Biophys Res Commun. 1960 Dec;3:575-7 - PubMed
    1. Biochim Biophys Acta. 1962 Jul 2;60:422-4 - PubMed
    1. Appl Microbiol. 1963 Jul;11:320-5 - PubMed

MeSH terms

LinkOut - more resources