Physical studies of cell surface and cell membrane structure. Deuterium nuclear magnetic resonance investigation of deuterium-labelled N-hexadeconoylgalactosylceramides (cerebrosides)
- PMID: 534624
- DOI: 10.1016/0005-2736(79)90043-9
Physical studies of cell surface and cell membrane structure. Deuterium nuclear magnetic resonance investigation of deuterium-labelled N-hexadeconoylgalactosylceramides (cerebrosides)
Abstract
1. Deuterium Fourier transform nuclear magnetic resonance spectra of a series of N-palmitoylgalactosylceramides (cerebrosides) specifically labelled with deuterium at one of positions 2', 6', 10' and 16' of the acyl chain, or in the C-6 hydroxymethyl group of the galactose residue, have been obtained using a spin-echo technique at 34.1 MHz with a homebuilt superconducting magnet spectrometer. 2. The effects of temperature and cholesterol on the deuterium spectra have been investigated. The results indicate, when compared at the same reduced temperature, that the hydrocarbon chain organization in the liquid crystalline phase of palmitoylgalactosylceramide is essentially identical to that seen in similar chain length glycerophospholipids. In particular, two sets of quadrupole splittings are seen for a 2'-labelled N-palmitoylgalactosylceramide, indicating non-equivalent deuterons as noted previously for phospholipids. 3. Two sets of quadrupole splittings are observed for the headgroup C-6-labelled N-palmitoylgalactosylceramide. It is proposed that these signals arise from the enantiomeric R and S lipids, and that motion of the hydroxymethyl group is slow (greater than 10(-5) S). These results suggest the presence of a hydrogen bond network in the polar headgroup region. 4. The effects of cholesterol on the deuterium spectra of N-palmitoylgalactosylceramide-labelled as C2H3 in the terminal methyl group, at 1:1 mol ratios and in excess water below the crystal to liquid-crystal phase transition temperature (Tc) of the pure lipid (82 degrees C), are different to the effects seen with the phosphatidylcholine-cholesterol system. The spectra below Tc are characterised by two overlapping powder patterns, one with a quadrupole splitting of approx. 6 kHz (fluid liquid-crystalline phase) and one with a quadrupole splitting of about 20--25 kHz (crystal or gel-state lipid). Exchange between these two environments is therefore slow, leading to the possibility of characterising the cerebroside-cholesterol phase diagram using deuterium nuclear magnetic resonance spectroscopy.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources