Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1969 Nov;10(6):623-30.

Biosynthesis of galactolipids by enzyme preparations from spinach leaves

  • PMID: 5348119
Free article

Biosynthesis of galactolipids by enzyme preparations from spinach leaves

J B Mudd et al. J Lipid Res. 1969 Nov.
Free article

Abstract

The pH optimum for galactolipid synthesis from UDP-galactose by spinach chloroplasts is 7.2 in Tris-HCl or phosphate buffer. The products include sterol glycosides, trigalactosyl diglyceride (tentatively identified), digalactosyl diglyceride, and monogalactosyl diglyceride in increasing order of quantity. The proportion of monogalactosyl diglyceride decreases and that of digalactosyl diglyceride increases as the pH is lowered. The galactolipid synthesis is quite resistant to elevated temperature; maximal incorporation of galactose from UDP-galactose was observed at 45 degrees C. The proportion of monogalactosyl diglyceride was greater at the higher temperatures. As much as 40% of the galactolipid-synthesizing capability of a spinach leaf homogenate is not sedimented by centrifugation for 60 min at 100,000 g. An acetone powder of spinach chloroplasts contains enzymes which catalyze galactolipid synthesis. This preparation is dependent on added diglycerides in order to make galactolipid, whereas the chloroplast preparation is not dependent on added diglycerides. Molecular species of diglycerides were compared as requirements for galactolipid synthesis. The requirement was satisfied best by the diglycerides of highest unsaturation. Methylation of the free hydroxyl of the diglyceride eliminated the effectiveness.

PubMed Disclaimer

LinkOut - more resources