Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1970 Jan;49(1):63-77.
doi: 10.1172/JCI106224.

Effect of lidocaine on the electrophysiological properties of ventricular muscle and purkinje fibers

Effect of lidocaine on the electrophysiological properties of ventricular muscle and purkinje fibers

J T Bigger Jr et al. J Clin Invest. 1970 Jan.

Abstract

Preparations of right ventricular papillary muscle and false tendon (Purkinje fiber) were obtained from dog hearts, placed in a bath perfused with Tyrode solution, and observed both under control conditions and during exposure to lidocaine in concentrations from 1 x 10(-7) to 5 x 10(-4) mole/liter. Transmembrane voltages were recorded from both ventricular muscle (VM) and Purkinje fibers (PF) of spontaneously beating and electrically driven preparations. Low concentrations (1 x 10(-6) and 1 x 10(-5) mole/liter) attenuated or abolished phase 4 (diastolic) depolarization and spontaneous firing in PF without decreasing their diastolic excitability. Concentrations of 1 x 10(-5) mole/liter produced maximal shortening of both action potential duration (APD) and effective refractory period (ERP) and made the ERP long relative to APD; the latter alteration was more prominent in VM. At concentrations </= 1 x 10(-5) mole/liter, lidocaine either caused a slight increase or no change in peak maximum rate of phase 0 depolarization (V(max)) and membrane responsiveness, the relationship between transmembrane activation voltage (MAV) and V(max) of the resultant action potential; these concentrations had no significant effect on resting potential (RP) in VM, maximal diastolic transmembrane voltage (DTMV(max)) in PF, or action potential amplitude in either fiber type. High (toxic) concentrations (>/= 1 x 10(-4) mole/liter) did not cause further shortening of APD or ERP in either VM or PF but did produce a decrease in peak V(max) of phase 0 and membrane responsiveness. In most cases, these concentrations also caused a decrease in RP or DTMV(max) and action potential amplitude, with progression to bizarre action potential depolarization and inexcitability. These properties of lidocaine are strikingly different from those of quinidine or procaine amide. The mechanisms responsible for lidocaine's in vivo antiarrhythmic action are discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Am J Cardiol. 1968 Sep;22(3):375-80 - PubMed
    1. Anesthesiology. 1968 Jan-Feb;29(1):110-2 - PubMed
    1. Br Med J. 1968 Jan 13;1(5584):89-91 - PubMed
    1. J Physiol. 1955 Sep 28;129(3):568-82 - PubMed
    1. J Physiol. 1955 Jan 28;127(1):213-24 - PubMed

MeSH terms