Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Dec;16(6):704-9.
doi: 10.1038/ki.1979.186.

Suppression of potassium-recycling in the renal medulla by short-term potassium deprivation

Free article

Suppression of potassium-recycling in the renal medulla by short-term potassium deprivation

D C Dobyan et al. Kidney Int. 1979 Dec.
Free article

Abstract

Recently we proposed that potassium, like urea, normally undergoes medullary recycling from collecting tubule to the pars recta or descending limb of the juxtamedullary nephron and suggested that the extent of recycling is a function of the concentration of potassium in collecting tubule fluid. To test this hypothesis further, we fed young rats a potassium-free diet for 3 days and then prepared them for micropuncture of the left renal papilla. Compared to findings in normally fed animals, potassium deprivation caused a significant fall in plasma potassium and urinary excretion of potassium. There was a striking decrease in the fraction of filtered potassium remaining at the end of the justamedullary descending limb for 94 +/- 11% to 38 +/- 3% (P less than 0.001). The latter value is not significantly different from the fraction of filtered sodium remaining (36 +/- 4%) and suggests that net addition of potassium to the pars recta or descending limb was completely abolished. A correlation was observed between the fraction of filtered potassium remaining at the end of the descending limb and either urinary potassium excretion (P less than 0.001) or urinary potassium concentration(P less than 0.001) in the contralateral unexposed kidney. These results lend further support to the hypothesis of medullary recycling of potassium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources