Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1970 Jul;209(1):209-29.
doi: 10.1113/jphysiol.1970.sp009163.

The effect of the tetraethylammonium ion on the delayed currents of frog skeletal muscle

The effect of the tetraethylammonium ion on the delayed currents of frog skeletal muscle

P R Stanfield. J Physiol. 1970 Jul.

Abstract

1. A method which permitted control of the membrane potential near the end of a muscle fibre and measurement of an approximation of the membrane current was used to investigate the effects of the tetraethylammonium (TEA) ion on the delayed outward potassium current obtained on depolarizing.2. Assuming R(i) to be 250 Omega cm and a fibre diameter of 80 mu, the mean value for the maximum potassium conductance (g(K)) was 23.2 +/- 3.2 mmho.cm(-2).3. 58 mM-TEA, in two series of experiments, reduced g(K) by about 90%. A concentration-effect relation for TEA in its action on the delayed rectifier could be fitted by a curve for a drug-receptor complex assuming one molecule of TEA to combine reversibly with one receptor, and a dissociation constant of 8 x 10(-3)M.4. TEA tended to shift the threshold for delayed rectification to slightly more negative membrane potentials. TEA caused a similar shift in the relation between n(infinity) and membrane potential, but did not much alter the form of the relation.5. The relation between n(infinity) and membrane potential and between tau(n) (-1) and membrane potential were well fitted by the model of Adrian, Chandler & Hodgkin (1970a) assuming that the Q(10) was 2.5.6. TEA slowed the rate of onset of the delayed potassium currents, decreasing tau(n) (-1) (the reciprocal of the time constant of the fourth power function which described the current's development) by about 80%.7. The inactivation of the delayed current with time was shown to follow a complex time course. A fast phase decays with a time constant of 270 msec and a slow phase with a time constant of 2.3 sec at a membrane potential of + 10 mV.8. The fast phase of the delayed current is much more susceptible to the action of TEA than the slow phase, and these are interpreted in terms of different potassium channels. TEA has little effect on the time constant with which either the fast current or the slow current inactivates.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1960 Sep;153:404-12 - PubMed
    1. J Physiol. 1956 Aug 28;133(2):412-9 - PubMed
    1. J Physiol. 1968 Sep;198(2):291-309 - PubMed
    1. J Physiol. 1970 Jul;208(3):645-68 - PubMed
    1. J Physiol. 1970 Jul;209(1):231-56 - PubMed

MeSH terms

LinkOut - more resources