Catabolism of fructose and mannitol in Clostridium thermocellum: presence of phosphoenolpyruvate: fructose phosphotransferase, fructose 1-phosphate kinase, phosphoenolpyruvate: mannitol phosphotransferase, and mannitol 1-phosphate dehydrogenase in cell extracts
- PMID: 5541009
- PMCID: PMC248345
- DOI: 10.1128/jb.105.1.226-231.1971
Catabolism of fructose and mannitol in Clostridium thermocellum: presence of phosphoenolpyruvate: fructose phosphotransferase, fructose 1-phosphate kinase, phosphoenolpyruvate: mannitol phosphotransferase, and mannitol 1-phosphate dehydrogenase in cell extracts
Abstract
Fructose and mannitol are fermented by Clostridium thermocellum in a medium containing salts and 0.5% yeast extract. The initial reaction in the catabolism of fructose was found to be the formation of fructose l-phosphate by phosphoenolpyruvate (PEP):fructose phosphotransferase which resembles the Kundig-Roseman phosphotransferase system. The phosphorylation of fructose l-phosphate to form fructose-1, 6-diphosphate is catalyzed by fructose l-phosphate kinase. Fructose-1, 6-diphosphate can be further metabolized by the Embden-Meyerhof pathway. The formation of both PEP:fructose phosphotransferase and fructose l-phosphate kinase is induced by growth in fructose medium. Mannitol catabolism was found to proceed by the phosphorylation of mannitol by PEP:mannitol phosphotransferase to form mannitol l-phosphate. Mannitol l-phosphate is converted to fructose 6-phosphate by a nicotinamide adenine dinucleotide-specific mannitol l-phosphate dehydrogenase. The fructose 6-phosphate formed in the reaction can enter the glycolytic scheme. The formation of both PEP:mannitol phosphotransferase and mannitol l-phosphate dehydrogenase is induced by growth in mannitol medium. Evidence is presented for the induction by mannitol of PEP:mannitol phosphotransferase and mannitol l-phosphate dehydrogenase in suspensions of fructose-grown cells.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
