Glucose catabolism in two derivatives of a Rhizobium japonicum strain differing in nitrogen-fixing efficiency
- PMID: 559670
- PMCID: PMC235407
- DOI: 10.1128/jb.131.1.179-187.1977
Glucose catabolism in two derivatives of a Rhizobium japonicum strain differing in nitrogen-fixing efficiency
Abstract
Radiorespirometric and enzymatic analyses reveal that glucose-grown cells of Rhizobium japonicum isolates I-110 and L1-110, both derivatives of R. japonicum strain 3I1b110, possess an active tricarboxylic acid cycle and metabolize glucose by simultaneous operation of the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways. The hexose cycle may play a minor role in the dissimilation of glucose. Failure to detect the nicotinamide adenine dinucleotide phosphate-dependent decarboxylating 6-phosphogluconate dehydrogenase (EC 1.1.1.44) evidences absence of the pentose phosphate pathway. Transketolase and transaldolase reactions, however, enable R. japonicum to produce the precursors for purine and pyrimidine biosynthesis from fructose-6-phosphate and glyceraldehyde-3-phosphate. A constitutive nicotinamide adenine dinucleotide-linked 6-phosphogluconate dehydrogenase has been detected. The enzyme is stimulated by either mannitol or fuctose and might initiate a new catabolic pathway. R. japonicum isolate I-110, characterized by shorter generation times on glucose and greater nitrogen-fixing efficiency, oxidizes glucose more extensively than type L1-110 and utilizes preferentially the Embden-Meyerhof-Parnas pathway, whereas the Entner-Doudoroff pathway apparently predominates in type L1-110.
Similar articles
-
Carbohydrate catabolism of selected strains in the genus Agrobacterium.Appl Microbiol. 1975 Nov;30(5):731-7. doi: 10.1128/am.30.5.731-737.1975. Appl Microbiol. 1975. PMID: 128316 Free PMC article.
-
Glucose catabolism in Rhizobium japonicum.J Bacteriol. 1969 Mar;97(3):1184-91. doi: 10.1128/jb.97.3.1184-1191.1969. J Bacteriol. 1969. PMID: 5776525 Free PMC article.
-
Pathways of carbohydrate metabolism in Microcyclus species.J Bacteriol. 1973 Jan;113(1):341-9. doi: 10.1128/jb.113.1.341-349.1973. J Bacteriol. 1973. PMID: 4688142 Free PMC article.
-
[Certain molecular-kinetic characteristics of pentose phosphate shunt enzymes].Usp Sovrem Biol. 1980 Jan-Feb;89(1):74-89. Usp Sovrem Biol. 1980. PMID: 6994388 Review. Russian. No abstract available.
-
New mechanisms for bacterial degradation of sulfoquinovose.Biosci Rep. 2022 Oct 28;42(10):BSR20220314. doi: 10.1042/BSR20220314. Biosci Rep. 2022. PMID: 36196895 Free PMC article. Review.
Cited by
-
Effect of glucose on polyol metabolism by Rhizobium trifolii.J Bacteriol. 1979 Sep;139(3):1075-8. doi: 10.1128/jb.139.3.1075-1078.1979. J Bacteriol. 1979. PMID: 479106 Free PMC article.
-
Isolation and metabolism of Vigna unguiculata root nodule protoplasts.Planta. 1979 Jan;145(5):487-95. doi: 10.1007/BF00380104. Planta. 1979. PMID: 24317866
-
Enzymes of glucose metabolism in Frankia sp.J Bacteriol. 1985 Apr;162(1):110-6. doi: 10.1128/jb.162.1.110-116.1985. J Bacteriol. 1985. PMID: 3980434 Free PMC article.
-
Physiological Characterization of Dicarboxylate-Induced Pleomorphic Forms of Bradyrhizobium japonicum.Appl Environ Microbiol. 1989 Mar;55(3):666-71. doi: 10.1128/aem.55.3.666-671.1989. Appl Environ Microbiol. 1989. PMID: 16347873 Free PMC article.
-
Catabolite-repression-like phenomenon in Rhizobium meliloti.J Bacteriol. 1978 Dec;136(3):1197-200. doi: 10.1128/jb.136.3.1197-1200.1978. J Bacteriol. 1978. PMID: 214420 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources