Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Apr;81(4):1017-24.
doi: 10.1093/oxfordjournals.jbchem.a131523.

Affinity of glucose analogs for alpha-glucan phosphorylases from rabbit muscle and potato tubers

Free article

Affinity of glucose analogs for alpha-glucan phosphorylases from rabbit muscle and potato tubers

M Ariki et al. J Biochem. 1977 Apr.
Free article

Abstract

The action of phosphorylase b from rabbit muscle and potato phosphorylase was inhibited to various extents by several glucose analogs. Like glucose itself, all of the glucosidic oxygen-substituted analogs tested in kinetic experiments showed a nonlinear competitive inhibition for muscle phosphorylase b and a linear competitive one for potato phosphorylase. 5-Thio-D-glucose, one of the ring oxygen-substituted analogs, also inhibited the action of muscle phosphorylase b in the same manner, while the inhibition pattern of 5-amino-D-glucose (nojirimycin) was of a linear noncompetitive type. Since the conformation of 5-amino-D-glucose in aqueous solution is half-chair (Reese et al. (1971) Carbohyd. Res. 18, 381-388), the unusual kinetic behavior of the compound toward muscle phosphorylase b was supposed to be due to its half-chair conformation. In the glucosidic oxygen-substituted analogs, the affinity for both muscle phosphorylase b and potato phosphorylase decreased with decreasing order of magnitude of electronegativity of the glucosidic atom. The strong positive correlation between the affinity and the electronegativity suggests that D-glucose-1-P, the substrate, may bind to phosphorylase with the formation of a hydrogen bond between its glucosidic oxygen and a hydrogen donor of the enzyme.

PubMed Disclaimer