A comparison of the killing of cultured mammalian cells induced by decay of incorporated tritiated molecules at--196 degrees C
- PMID: 5643274
- PMCID: PMC1367587
- DOI: 10.1016/S0006-3495(68)86499-9
A comparison of the killing of cultured mammalian cells induced by decay of incorporated tritiated molecules at--196 degrees C
Abstract
The killing efficiency of tritium disintegrations in frozen mammalian cells labeled with tritiated uridine, histidine, and lysine was compared with the killing efficiency of incorporated tritiated thymidine. In each case, the distribution of tritium in the cells was determined by chemical fractionation as well as by radio-autography. Of all tritium disintegrations, by far the most effective were those occurring in DNA molecules within frozen cells; such incorporated tritium has a killing efficiency of 0.006. When cells were incubated with tritiated uridine for 10 min to label nuclear RNA, the killing efficiency was 0.0015. When the cells were pulse labeled with tritiated uridine and permitted to grow in nonradioactive media for 10 hr before freezing in order to incorporate tritium into cytoplasmic RNA, the killing efficiency was reduced to 0.0010. The results suggest that decay of tritium in nuclear RNA is more effective than that in cytoplasmic RNA. When the cells were labeled with tritiated histidine or lysine for 30 min, tritium atoms were found mainly in the acid soluble rather than in the protein fraction and the killing efficiency in each case was approximately 0.0007. The results of these suicide experiments indicate that the killing efficiency of tritium disintegrations depends on where tritium is located within the cells. Tritium disintegrations in the nucleus are more effective in killing the cell than that in cytoplasm; and tritium disintegrations on DNA in the nucleus is more effective in killing the cell than that of nuclear RNA.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
