A-T rich sequences in vertebrate DNA. A possible explanation of q-banding in metaphase chromosomes
- PMID: 567568
- DOI: 10.1007/BF00293173
A-T rich sequences in vertebrate DNA. A possible explanation of q-banding in metaphase chromosomes
Abstract
Partially denatured DNAs from mouse, cow, and chicken were visualized in the electron microscope by the basic protein film technique and the size and distribution of the denatured regions characterized. A-T rich sequences visualized at 15% denaturation average about 1500 bases in length for all three species and are arranged quite non-randomly in the genome. This arrangement is such that 30--50% of the entire genome contains no A-T rich DNA, and another 20% is composed about one-half of A-T rich sequences and one-half of other sequences. Comparison with DNA denaturation profiles indicates that for each organism these sequences are from 25--30% G+C and that there is very little if any DNA more A-T rich than these. Estimates from published studies of fluorescence enhancement of quinacrine bound to A-T rich DNAs suggest that the observed non-random organization of A-T rich sequences is sufficient to account for Q banding of metaphase chromosomes.
Similar articles
-
Mechanisms of chromosome banding. V. Quinacrine banding.Chromosoma. 1975;50(2):111-4. doi: 10.1007/BF00283236. Chromosoma. 1975. PMID: 48455
-
Satellite DNA sequence.Nature. 1970 Aug 22;227(5260):775. doi: 10.1038/227775a0. Nature. 1970. PMID: 5464580 No abstract available.
-
Mechanisms of chromosome banding. IX. Are variations in DNA base composition adequate to account for quinacrine, Hoechst 33258 and daunomycin banding?Chromosoma. 1976 Jul 8;56(3):199-211. doi: 10.1007/BF00293185. Chromosoma. 1976. PMID: 61106
-
The evolution of base sequences in polynucleotides.Prog Nucleic Acid Res Mol Biol. 1965;4:129-60. doi: 10.1016/s0079-6603(08)60786-2. Prog Nucleic Acid Res Mol Biol. 1965. PMID: 5337874 Review. No abstract available.
-
[Gas chromatography of nucleic acid components].Tanpakushitsu Kakusan Koso. 1968 Jul;13(8):735-42. Tanpakushitsu Kakusan Koso. 1968. PMID: 4882393 Review. Japanese. No abstract available.
Cited by
-
The complete mitochondrial genome of Rhynchocypris oxycephalus (Teleostei: Cyprinidae) and its phylogenetic implications.Ecol Evol. 2019 Jun 20;9(13):7819-7837. doi: 10.1002/ece3.5369. eCollection 2019 Jul. Ecol Evol. 2019. PMID: 31346443 Free PMC article.
-
Characterization of extrachromosomal DNA in the flesh fly Sarcophaga bullata.Chromosoma. 1979 Nov;75(2):145-59. doi: 10.1007/BF00292204. Chromosoma. 1979. PMID: 533666
-
Characterization and Comparison of the Two Mitochondrial Genomes in the Genus Rana.Genes (Basel). 2023 Sep 11;14(9):1786. doi: 10.3390/genes14091786. Genes (Basel). 2023. PMID: 37761926 Free PMC article.
-
Historical effective population size of North American hoary bat (Lasiurus cinereus) and challenges to estimating trends in contemporary effective breeding population size from archived samples.PeerJ. 2021 Apr 19;9:e11285. doi: 10.7717/peerj.11285. eCollection 2021. PeerJ. 2021. PMID: 33976981 Free PMC article.
-
The complete mitochondrial genome of Exostoma gaoligongense (Siluriformes: Sisoridae) and its phylogenetic analysis within glyptosternine catfishes.Mitochondrial DNA B Resour. 2021 Apr 26;6(4):1424-1425. doi: 10.1080/23802359.2021.1912670. Mitochondrial DNA B Resour. 2021. PMID: 33969190 Free PMC article.