Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Apr 10;254(7):2234-43.

Kinetics for the secretion of nonhelical procollagen by freshly isolated tendon cells

  • PMID: 570970
Free article

Kinetics for the secretion of nonhelical procollagen by freshly isolated tendon cells

W W Kao et al. J Biol Chem. .
Free article

Abstract

Fibroblasts isolated by enzymic digestion of chick embryo tendons have previously been used to examine the kinetics for the secretion of procollagen (Kao, W. W.-Y., Berg, R. A., and Prockop, D. J. (1977) J. Biol. Chem. 252, 8391-8397). The results indicated that the kinetics approximated the sum of two first order processes with half-times of 14 and 115 min. Here, the same fibroblasts were incubated in the presence of 1.53 mM cis-4-hydroxyproline, an analogue of proline, or in the presence of 0.3 mM alpha,alpha'-dipyridyl, an inhibitor of prolyl hydroxylase, so that the cells synthesized procollagen which could not assume a triple helical conformation characteristic of procollagen. Measurements of the secretion of nonhelical procollagen indicated that the kinetics for secretion differed from the kinetics for the secretion of procollagen and approximated a single first order process with a half-time of approximately 130 min. The nonhelical procollagen synthesized and secreted in the presence of either cis-4-hydroxyproline or alpha,alpha'-dipyridyl consisted of disulfide-bonded pro gamma chains of type I procollagen. The results suggested that the intracellular nonhelical procollagen was present in a single metabolic pool and secretion from this pool occurred with a different rate-limiting step than for helical procollagen. Further results indicated that nonhelical procollagen had a high affinity for prolyl hydroxylase and the affinity for the enzyme was greatly reduced if the procollagen was allowed to assume the triple helical conformation characteristic of normal procollagen. The results are consistent with the hypothesis that the secretion of procollagen is influenced by its conformation-dependent interaction with prolyl hydroxylase or other post-translational enzymes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources