Effect of inorganic sulfide on the growth and metabolism of Methanosarcina barkeri strain DM
- PMID: 572199
- PMCID: PMC243279
- DOI: 10.1128/aem.37.4.670-675.1979
Effect of inorganic sulfide on the growth and metabolism of Methanosarcina barkeri strain DM
Abstract
Minimal growth of Methanosarcina barkeri strain DM occurred when sulfide was omitted fromthe growth medium, and addition of either sodium sulfate or coenzyme M to sulfide-depleted media failed to restore growth. Optimal growth occurred in the presence of 1.25 mM added sulfide, giving a molar growth yield (YCH4) of 4.4 mg (dry weight) of cells per mmol of CH4 produced. Increasing sulfide to 12.5 mM led to decrease in YCH4 (1.9 mg [dry weight]/mmol of CH4), in the specific growth rate and in be intracellular levels of adenosine triphosphate. However, the specific rate of methane production increased. The data suggested that at elevated sulfide levels (12.5 mM) the decrease in YCH4 might be a result of an increase in the relative energy needed for maintnenace and of uncoupling of growth from energy production.
Similar articles
-
Methyl-coenzyme M, an intermediate in methanogenic dissimilation of C1 compounds by Methanosarcina barkeri.J Bacteriol. 1980 Feb;141(2):728-34. doi: 10.1128/jb.141.2.728-734.1980. J Bacteriol. 1980. PMID: 6444945 Free PMC article.
-
Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri.Antonie Van Leeuwenhoek. 1980;46(6):601-10. doi: 10.1007/BF00394016. Antonie Van Leeuwenhoek. 1980. PMID: 6786216
-
Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde.J Bacteriol. 1985 Oct;164(1):95-101. doi: 10.1128/jb.164.1.95-101.1985. J Bacteriol. 1985. PMID: 3930472 Free PMC article.
-
Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri.Eur J Biochem. 1984 May 15;141(1):217-22. doi: 10.1111/j.1432-1033.1984.tb08178.x. Eur J Biochem. 1984. PMID: 6327309
-
The bioenergetics of methanogenesis.Biochim Biophys Acta. 1984 Sep 6;768(2):113-63. doi: 10.1016/0304-4173(84)90002-8. Biochim Biophys Acta. 1984. PMID: 6236847 Review.
Cited by
-
Aquatic and terrestrial cyanobacteria produce methane.Sci Adv. 2020 Jan 15;6(3):eaax5343. doi: 10.1126/sciadv.aax5343. eCollection 2020 Jan. Sci Adv. 2020. PMID: 31998836 Free PMC article.
-
Carbon and electron flow in mud and sandflat intertidal sediments at delaware inlet, nelson, new zealand.Appl Environ Microbiol. 1980 Apr;39(4):686-94. doi: 10.1128/aem.39.4.686-694.1980. Appl Environ Microbiol. 1980. PMID: 16345535 Free PMC article.
-
Growth and plating efficiency of methanococci on agar media.Appl Environ Microbiol. 1983 Jul;46(1):220-6. doi: 10.1128/aem.46.1.220-226.1983. Appl Environ Microbiol. 1983. PMID: 16346342 Free PMC article.
-
Sulfide-dependent methane production and growth of a thermophilic methanogenic bacterium.Appl Environ Microbiol. 1981 Oct;42(4):580-4. doi: 10.1128/aem.42.4.580-584.1981. Appl Environ Microbiol. 1981. PMID: 16345854 Free PMC article.
-
Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies.Life (Basel). 2015 Dec 3;5(4):1652-86. doi: 10.3390/life5041652. Life (Basel). 2015. PMID: 26703739 Free PMC article. Review.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources