Passive membrane potentials: a generalization of the theory of electrotonus
- PMID: 5759920
- PMCID: PMC1367341
- DOI: 10.1016/S0006-3495(68)86493-8
Passive membrane potentials: a generalization of the theory of electrotonus
Abstract
THE THEORY OF ELECTROTONUS, WHICH HAS BEEN WELL DEVELOPED FOR SMALL CYLINDERS, IS EXTENDED: the fundamental potential equations for a membrane of arbitrary shape are derived, and solutions are found for cylindrical and spherical geometries. If two purely conductive media are separated by a resistance-capacitance membrane, then Laplace's equation describes the potential in either medium, and two boundary equations relate the transmembrane potential to applied currents and to currents flowing into the membrane from each medium. The core conductor model, on which most previous work on cylindrical electrotonus has been based, gives rise to a one dimensional diffusion equation, the cable equation, for the transmembrane potential in a small cylinder. Under the assumptions of the core conductor model the more general equations developed here are shown to reduce to the cable equation. The two theories agree well in predicting the transmembrane potential in a small cylinder owing to an applied current step, and the extracellular potential for this cylinder is estimated numerically from the general theory. A detailed proof is given for the isopotentiality of a spherical soma membrane.
Similar articles
-
Cable theory for finite length dendritic cylinders with initial and boundary conditions.Biophys J. 1972 Jan;12(1):25-45. doi: 10.1016/S0006-3495(72)86069-7. Biophys J. 1972. PMID: 5007242 Free PMC article.
-
From Maxwell's equations to the cable equation and beyond.Prog Biophys Mol Biol. 2004 May;85(1):71-116. doi: 10.1016/j.pbiomolbio.2003.08.001. Prog Biophys Mol Biol. 2004. PMID: 15050381 Review.
-
A simple vector implementation of the Laplace-transformed cable equations in passive dendritic trees.Biol Cybern. 1992;68(1):15-21. doi: 10.1007/BF00203133. Biol Cybern. 1992. PMID: 1486128
-
Techniques for obtaining analytical solutions to the multicylinder somatic shunt cable model for passive neurones.Biophys J. 1992 Aug;63(2):350-65. doi: 10.1016/S0006-3495(92)81631-4. Biophys J. 1992. PMID: 1420882 Free PMC article.
-
Ionic channels and gating currents in excitable membranes.Annu Rev Biophys Bioeng. 1977;6:7-31. doi: 10.1146/annurev.bb.06.060177.000255. Annu Rev Biophys Bioeng. 1977. PMID: 326155 Review. No abstract available.
Cited by
-
Voltage clamp on Helix pomatia neuronal membrane; current measurement over a limited area of the soma surface.Pflugers Arch. 1969;311(3):272-7. doi: 10.1007/BF00590532. Pflugers Arch. 1969. PMID: 5388560 No abstract available.
-
Subthreshold oscillatory responses of the Hodgkin-Huxley cable model for the squid giant axon.Biophys J. 1969 Oct;9(10):1206-22. doi: 10.1016/S0006-3495(69)86446-5. Biophys J. 1969. PMID: 5824410 Free PMC article.
-
An electrical description of the motoneurone, and its application to the analysis of synaptic potentials.J Physiol. 1971 Jun;215(2):321-52. doi: 10.1113/jphysiol.1971.sp009473. J Physiol. 1971. PMID: 5145722 Free PMC article.
-
Voltage clamp of the Aplysia giant neurone: early sodium and calcium currents.J Physiol. 1970 Nov;211(1):217-44. doi: 10.1113/jphysiol.1970.sp009276. J Physiol. 1970. PMID: 5500995 Free PMC article.
-
The correction factors for sucrose gap measurements and their practical applications.Biophys J. 1981 Jan;33(1):107-19. doi: 10.1016/S0006-3495(81)84875-8. Biophys J. 1981. PMID: 6974012 Free PMC article.
References
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials