Glucose catabolism in Rhizobium japonicum
- PMID: 5776525
- PMCID: PMC249833
- DOI: 10.1128/jb.97.3.1184-1191.1969
Glucose catabolism in Rhizobium japonicum
Abstract
Glucose catabolism in Rhizobium japonicum ATCC 10324 was investigated by the radiorespirometric method and by assaying for key enzymes of the major energy-yielding pathways. Specifically labeled glucose gave the following results for resting cells, with values expressed as per cent (14)CO(2) evolution: C-1=59%, C-2=51%, C-3=45%, C-4=59%, and C-6=43%. These values indicate that glucose was degraded by the Entner-Doudoroff pathway alone. Cells which grew in glucose-yeast extract-salts medium gave essentially the same pattern except for retardation of the C-6 carbon. The rates were: C-1=54%, C-2=42%, C-3=51%, C-4=59%, and C-6=32%. Hexokinase, glucose-6-phosphate dehydrogenase, transketolase, and an enzyme system which produces pyruvate from 6-phosphogluconate were found to be present in these cells. No 6-phosphogluconate dehydrogenase was detected. Oxidation of specifically labeled pyruvate gave the following (14)CO(2) evolution pattern: C-1=78%, C-2=48%, and C-3=37%; the pattern from acetate was C-1=73%; and C-2=56%. Oxidation of glutamate showed the preferential rate of (14)CO(2) evolution to be C-1 > C-2=C-5 > C-3, 4, whereas a higher yield of (14)CO(2) was obtained from the C-1 and C-4 carbons of succinate than from the C-2 and C-3 carbons. These data are consistent with the operation of the Entner-Doudoroff pathway and tricarboxylic acid cycle as the catabolic pathways of glucose oxidation in R. japonicum.
Similar articles
-
Pathways of carbohydrate metabolism in Microcyclus species.J Bacteriol. 1973 Jan;113(1):341-9. doi: 10.1128/jb.113.1.341-349.1973. J Bacteriol. 1973. PMID: 4688142 Free PMC article.
-
Gluconate catabolism in Rhizobium japonicum.J Bacteriol. 1970 Mar;101(3):698-704. doi: 10.1128/jb.101.3.698-704.1970. J Bacteriol. 1970. PMID: 5438044 Free PMC article.
-
Glucose catabolism in two derivatives of a Rhizobium japonicum strain differing in nitrogen-fixing efficiency.J Bacteriol. 1977 Jul;131(1):179-87. doi: 10.1128/jb.131.1.179-187.1977. J Bacteriol. 1977. PMID: 559670 Free PMC article.
-
Carbohydrate metabolism in Agrobacterium tumefaciens.J Bacteriol. 1973 Oct;116(1):304-13. doi: 10.1128/jb.116.1.304-313.1973. J Bacteriol. 1973. PMID: 4745418 Free PMC article.
-
Physiology of sporeforming bacteria associated with insects. IV. Glucose catabolism in Bacillus larvae.J Bacteriol. 1971 Nov;108(2):828-34. doi: 10.1128/jb.108.2.828-834.1971. J Bacteriol. 1971. PMID: 4331499 Free PMC article.
Cited by
-
Catabolite-repression-like phenomenon in Rhizobium meliloti.J Bacteriol. 1978 Dec;136(3):1197-200. doi: 10.1128/jb.136.3.1197-1200.1978. J Bacteriol. 1978. PMID: 214420 Free PMC article.
-
Promotion of infection thread formation by substances from Rhizobium.Appl Environ Microbiol. 1980 Feb;39(2):297-301. doi: 10.1128/aem.39.2.297-301.1980. Appl Environ Microbiol. 1980. PMID: 16345501 Free PMC article.
-
Contributing carbohydrate catabolic pathways in Cyclobacterium marinus.J Bacteriol. 1983 Jan;153(1):335-9. doi: 10.1128/jb.153.1.335-339.1983. J Bacteriol. 1983. PMID: 6848485 Free PMC article.
-
Pathways of carbohydrate metabolism in Microcyclus species.J Bacteriol. 1973 Jan;113(1):341-9. doi: 10.1128/jb.113.1.341-349.1973. J Bacteriol. 1973. PMID: 4688142 Free PMC article.
-
Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans.J Bacteriol. 1971 Oct;108(1):334-42. doi: 10.1128/jb.108.1.334-342.1971. J Bacteriol. 1971. PMID: 4399339 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous