Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977;27(96):1827-32.

[Activation mechanisms in chlorinated aliphatic compounds/experimental possibilities and clinical significance (author's transl)]

[Article in German]
  • PMID: 579148

[Activation mechanisms in chlorinated aliphatic compounds/experimental possibilities and clinical significance (author's transl)]

[Article in German]
D Henschler. Arzneimittelforschung. 1977.

Abstract

Chemical reactivity, biotransformation and toxic effects of chlorinated aliphatic compounds are decisively determined by type and number of chlorine substitutions. In saturated compounds, chlorine substitution exerts a destabilization; metabolic reactions are free radical formation and dechlorination or dehydrochlorination, respectively, under formation of olefins. In saturated alkenes, Cl-substitution leads to a stabilization of the olefinic double bond. Biotransformation of this class of compounds starts with epoxidation. The epoxides are prone, among other reactions, to intramolecular rearrangement; more stable aldehydes or acid chlorides are formed. In the series of chlorinated ethylenes, the rearrangement mechanisms have been studied systematically in vitro and in vivo. As judged from the identified metabolites there is accordance in vitro and in vivo, with one important exception: trichloroethylene. The only formation of chloral in vivo may be due to a catalysis by the iron in P450. In a modified Ames test system the unsymmetrically substituted chlorinated ethylenes are found mutagenic (tri-,1,1-dichloroethylene and vinyl chloride), whereas symmetrically substituted molecules are inactive. The reason for this is seen in the high instability of the unsymmetric molecules caused by the electron withdrawal effect of chlorine.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources