Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1969 Sep;54(3):352-68.
doi: 10.1085/jgp.54.3.352.

Mechanical threshold as a factor in excitation-contraction coupling

Mechanical threshold as a factor in excitation-contraction coupling

S R Taylor et al. J Gen Physiol. 1969 Sep.

Abstract

I(-), CH(3)SO(4) (-), and ClO(4) (-), like other previously studied type A twitch potentiators (Br(-), NO(3) (-), SCN(-), and caffeine), lower the mechanical threshold in K depolarization contractures of frog skeletal muscle. In potentiated twitches, I(-), Br(-), CH(3)SO(4) (-), ClO(4), and SCN, as already reported for NO(3) (-) and caffeine, slightly shorten the latent period (L) and considerably increase the rate of tension development (dP/dt) during the first few milliseconds of the contraction period. Divalent cations (8 mM Ca(2+), 0.5-1.0 mM Zn(2+) and Cd(2+)) raise the mechanical threshold of contractures, and correspondingly affect the twitch by depressing the tension output, increasing L, and decreasing the early dP/dt, thus acting oppositely to the type A potentiators. These various results form a broad, consistent pattern indicating that electromechanical coupling in the twitch is conditioned by a mechanical threshold as it is in the contracture, and suggesting that the lower the threshold, in reference to the raised threshold under the action of the divalent cations, the more effective is a given action potential in activating the twitch as regards especially both its early rate and peak magnitude of tension development. The results suggest that the direct action by which the various agents affect the level of the mechanical threshold involves effects on E-C coupling processes of the T tubular and/or the sarcoplasmic reticulum which control the release of Ca for activating contraction.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Fed Proc. 1965 Sep-Oct;24(5):1116-23 - PubMed
    1. J Gen Physiol. 1967 Sep;50(8):2109-28 - PubMed
    1. J Physiol. 1966 Jul;185(1):224-38 - PubMed
    1. J Physiol. 1956 Aug 28;133(2):412-9 - PubMed
    1. Pharmacol Rev. 1965 Sep;17(3):265-320 - PubMed