Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Oct;272(1):25-43.
doi: 10.1113/jphysiol.1977.sp012032.

Passive signal propagation and membrane properties in median photoreceptors of the giant barnacle

Passive signal propagation and membrane properties in median photoreceptors of the giant barnacle

A J Hudspeth et al. J Physiol. 1977 Oct.

Abstract

1. The light-induced electrical responses of barnacle photoreceptors spread decrementally along the cells' axons. The decay of the depolarizing and hyperpolarizing components of the visual signal was studied by recording intracellularly from single receptor axons of the median ocellus of the giant barnacle.2. The resistance of the photoreceptor neurone decreases markedly when the cell is depolarized with respect to its dark resting potential of -60 mV. This rectification results in differential attenuation of the depolarizing and hyperpolarizing components of the visual signal as they spread down the axon. Consequently, the visual signal entering the synaptic region is conspicuously distorted.3. Bathing the photoreceptor axons in sodium-free or calcium-free saline or in isotonic sucrose does not significantly affect the spread of the visual signal to the terminals. Thus the signal is not amplified by an ionic mechanism along the axon.4. Membrane characteristics of the photoreceptor for hyperpolarizing voltage changes were estimated from (a) the ratio of the amplitudes of the visual signals recorded simultaneously in the axon and in the soma, (b) the time constant, and (c) the input resistance of the cell. All three independent measurements are consistent with a length constant 1 to 2 times the total length of the cell (lambda = 10-18 mm) and an unusually high membrane resistivity of about 300 kOmega cm(2). This resistivity enables the receptor potential to spread passively to the terminal region.5. Electron microscopic examination of receptor axons reveals an investment of glial lamellae, but demonstrates neither unusual structures which would lead to a high apparent membrane resistivity, nor junctions between cells which would seal off the extracellular space. Thus the observed high resistivity appears to be an intrinsic property of the receptor membrane.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1977 Oct;272(1):1-23 - PubMed
    1. J Physiol. 1975 Jan;244(1):53-81 - PubMed
    1. J Physiol. 1972 Jan;220(1):145-75 - PubMed
    1. J Neurophysiol. 1969 May;32(3):339-55 - PubMed
    1. Science. 1972 Aug 4;177(4047):438-41 - PubMed

Publication types

LinkOut - more resources