Human tactile detection thresholds: modification by inputs from specific tactile receptor classes
- PMID: 592198
- PMCID: PMC1353566
- DOI: 10.1113/jphysiol.1977.sp012052
Human tactile detection thresholds: modification by inputs from specific tactile receptor classes
Abstract
1. Human detection thresholds for a vibratory stimulus applied to the volar surface of the index finger were examined under conditions where afferents from specific tactile receptor classes were simultaneously activated from the thenar eminence. The experiments were designed to test whether stimuli which have been shown previously to induce afferent inhibition of ;tactile' neurones in the cuneate nucleus of the cat could modify human subjective performance in a tactile detection task. Conditioning stimuli to the thenar eminence were usually of three forms; steady indentation to engage slowly adapting tactile receptors; 300 Hz vibration to engage Pacinian corpuscles; and 30 Hz vibration to engage the intradermal, rapidly adapting tactile receptors which are thought to be Meissner's corpuscles.2. In ten subjects the mean detection threshold for a 30 Hz test stimulus in the absence of conditioning stimulation was 8.6 +/- 1.0 mum (S.E.). Detection thresholds were increased substantially in the presence of a 300 Hz, 100 mum conditioning stimulus (mean increase 11.1 +/- 2.0 mum), whereas minor or insignificant effects were seen with conditioning stimuli consisting of (a) 30 Hz, 100 mum (mean increase 1.4 +/- 0.8 mum), (b) steady indentation, 1.5 mm in amplitude (mean increase 1.3 +/- 0.7 mum) or (c) 300 Hz, 100 mum to the contralateral thenar eminence (mean increase 0.4 +/- 0.5 mum).3. The 300 Hz conditioning stimulus to the ipsilateral thenar eminence caused a marked increase in detection thresholds at all test stimulus frequencies over the range 10-450 Hz. The effects of the conditioning stimulation therefore operated on inputs from Pacinian corpuscles, which are responsible for vibration detection at 80-450 Hz, and on inputs from the intradermal, rapidly adapting receptors which are responsible for vibration detection at 10-80 Hz.4. The band width of conditioning vibratory frequencies which was effective at amplitudes of 100 mum in bringing about increases in detection threshold extended from 50-80 Hz to 300 Hz, the maximum tested.5. Whereas amplitudes of 1-2 mum produced clear increases in detection thresholds with conditioning stimuli of 300 Hz, amplitudes of > 200 mum were needed at 30 Hz.6. The observed elevations in detection threshold are consistent with an afferent-induced inhibitory action exerted at synaptic relays of the sensory pathway by tactile inputs arising exclusively or predominantly from Pacinian corpuscles.
Similar articles
-
Coding of information about tactile stimuli by neurones of the cuneate nucleus.J Physiol. 1978 Dec;285:493-513. doi: 10.1113/jphysiol.1978.sp012585. J Physiol. 1978. PMID: 745115 Free PMC article.
-
Impairment of human proprioception by high-frequency cutaneous vibration.J Physiol. 2007 Jun 15;581(Pt 3):971-80. doi: 10.1113/jphysiol.2006.126854. Epub 2007 Apr 5. J Physiol. 2007. PMID: 17412774 Free PMC article.
-
Modification of human pain threshold by specific tactile receptors.Acta Physiol Scand. 1979 Dec;107(4):339-41. doi: 10.1111/j.1748-1716.1979.tb06485.x. Acta Physiol Scand. 1979. PMID: 232366
-
Psychophysics of vibrotactile stimulation.J Acoust Soc Am. 1985 Jan;77(1):225-32. doi: 10.1121/1.392263. J Acoust Soc Am. 1985. PMID: 3882801 Review.
-
Synaptic transmission between single tactile and kinaesthetic sensory nerve fibers and their central target neurones.Behav Brain Res. 2002 Sep 20;135(1-2):197-212. doi: 10.1016/s0166-4328(02)00166-3. Behav Brain Res. 2002. PMID: 12356451 Review.
Cited by
-
Perceived pitch of vibrotactile stimuli: effects of vibration amplitude, and implications for vibration frequency coding.J Physiol. 1990 Dec;431:403-16. doi: 10.1113/jphysiol.1990.sp018336. J Physiol. 1990. PMID: 2100311 Free PMC article.
-
Coding of information about tactile stimuli by neurones of the cuneate nucleus.J Physiol. 1978 Dec;285:493-513. doi: 10.1113/jphysiol.1978.sp012585. J Physiol. 1978. PMID: 745115 Free PMC article.
-
Vibrotactile masking: effects of one- and two-site stimulation.Percept Psychophys. 1983 Apr;33(4):379-87. doi: 10.3758/bf03205886. Percept Psychophys. 1983. PMID: 6866701 No abstract available.
-
On the Effect of Vibrotactile Stimulation in Essential Tremor.Healthcare (Basel). 2024 Feb 9;12(4):448. doi: 10.3390/healthcare12040448. Healthcare (Basel). 2024. PMID: 38391822 Free PMC article.
-
Vibrotactile masking experiments reveal accelerated somatosensory processing in congenitally blind braille readers.J Neurosci. 2010 Oct 27;30(43):14288-98. doi: 10.1523/JNEUROSCI.1447-10.2010. J Neurosci. 2010. PMID: 20980584 Free PMC article.
References
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous