Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1966 Sep;50(1):25-41.
doi: 10.1085/jgp.50.1.25.

The spatiotemporal analysis of odorants at the level of the olfactory receptor sheet

The spatiotemporal analysis of odorants at the level of the olfactory receptor sheet

M M Mozell. J Gen Physiol. 1966 Sep.

Abstract

Activity in two separate regions of the frog olfactory mucosa was sampled by simultaneously recording the summated neural discharges from the olfactory nerve branches originating from them. The difference in the activity from these two regions in response to a stimulus was measured by: (a) the ratio of the response amplitude recorded from the lateral nerve branch to that recorded from the medial nerve branch (LB/MB ratio), (b) the latency difference (or time interval) between these two responses. Equal concentrations of four different odorants were drawn into the nose by an artificially produced sniff of known dimensions. At each concentration in every animal the four chemicals were ranked in order of the magnitudes of their LB/MB ratios and again in order of their latency differences. Regardless of their concentration, the same chemicals fell into the same ranks in different animals. In addition, for each chemical the magnitudes of the ratios and latency differences showed only minimal changes with concentration. Thus, spatiotemporal patterns of relative response magnitudes and latency differences across the mucosa differentially represented the odorants. Such a spatiotemporal code, together with physicochemical considerations, suggested that the nose separates vapors in a manner similar to a gas chromatograph. This is further supported by the previously observed reversal of the ratio patterns with reversal of air flow direction through the olfactory sac.

PubMed Disclaimer

References

    1. Am J Physiol. 1962 Aug;203:353-8 - PubMed
    1. J Neurophysiol. 1953 Nov;16(6):595-607 - PubMed
    1. Br Med J. 1954 Feb 6;1(4857):287-90 - PubMed
    1. Science. 1964 Mar 20;143(3612):1336-7 - PubMed
    1. Ann N Y Acad Sci. 1964 Jul 30;116:711-24 - PubMed