Stereochemical criteria for polypeptide and protein chain conformations. 3. Helical and hydrogen-bonded polypeptide chains
- PMID: 5972382
- PMCID: PMC1368047
- DOI: 10.1016/s0006-3495(66)86699-7
Stereochemical criteria for polypeptide and protein chain conformations. 3. Helical and hydrogen-bonded polypeptide chains
Abstract
The previous study, for a pair of peptide units, of the conformations which are allowed on the basis of stereochemical criteria of van der Waals contacts has been extended to the analysis of possible conformations of helical polypeptide chains. Computer methods have been developed which select conformations on the basis of both satisfactory interatomic contacts as well as the formation of good intramolecular hydrogen bonds. Such programs have been used to map the allowed dihedral angle pairs (varphi, psi) for helical polypeptide chains. This survey has been made for values of the N-C(a)-C' angle (tau) of 105 degrees , 110 degrees , and 115 degrees , from which the significant influence of this angle in determining allowed helical conformations can be demonstrated. Calculations have also been carried out using potential energy functions for the interaction between nonbonded atoms. The potential energy contour maps obtained in this manner are basically similar to the conformational maps calculated by the first method.
Similar articles
-
Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units.Biophys J. 1965 Nov;5(6):909-33. doi: 10.1016/S0006-3495(65)86759-5. Biophys J. 1965. PMID: 5884016 Free PMC article.
-
Stereochemical criteria for polypeptide and protein chain conformations. 8. Energy maps for a pair of non-planar peptide units having distortion of bond angle at the -carbon atom.Int J Pept Protein Res. 1972;4(2):91-9. Int J Pept Protein Res. 1972. PMID: 5068925 No abstract available.
-
Inter-chain proline:proline contacts contribute to the stability of the triple helical conformation.J Biomol Struct Dyn. 1988 Oct;6(2):223-33. doi: 10.1080/07391102.1988.10507709. J Biomol Struct Dyn. 1988. PMID: 3271521
-
Intramolecularly hydrogen-bonded peptide conformations.CRC Crit Rev Biochem. 1980;9(1):1-44. doi: 10.3109/10409238009105471. CRC Crit Rev Biochem. 1980. PMID: 6254725 Review.
-
Intramolecular backbone···backbone hydrogen bonds in polypeptide conformations. The other way around: ɛ-turn.Biopolymers. 2017 Jan;108(1). doi: 10.1002/bip.22911. Biopolymers. 2017. PMID: 27404945 Review.
Cited by
-
Conformational flexibility in calcitonin: the dynamic properties of human and salmon calcitonin in solution.J Biomol NMR. 1999 Feb;13(2):161-74. doi: 10.1023/a:1008365322148. J Biomol NMR. 1999. PMID: 10070757
-
Free-energy calculations of the interactions of helical poly(L-proline) with water.Proc Natl Acad Sci U S A. 1971 Oct;68(10):2468-71. doi: 10.1073/pnas.68.10.2468. Proc Natl Acad Sci U S A. 1971. PMID: 5289879 Free PMC article.
-
An approach to conformational analysis of peptides and proteins in solution based on a combination of nuclear magnetic resonance spectroscopy and conformational energy calculations.Proc Natl Acad Sci U S A. 1970 Sep;67(1):239-46. doi: 10.1073/pnas.67.1.239. Proc Natl Acad Sci U S A. 1970. PMID: 5272315 Free PMC article.
-
Minimization of polypeptide energy. 8. Application of the deflation technique to a dipeptide.Proc Natl Acad Sci U S A. 1969 Sep;64(1):42-9. doi: 10.1073/pnas.64.1.42. Proc Natl Acad Sci U S A. 1969. PMID: 5263023 Free PMC article.
-
Bacteriophage lambda cro mutations: effects on activity and intracellular degradation.Proc Natl Acad Sci U S A. 1986 Dec;83(23):8829-33. doi: 10.1073/pnas.83.23.8829. Proc Natl Acad Sci U S A. 1986. PMID: 2947238 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources