Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1967 Aug;104(2):588-600.
doi: 10.1042/bj1040588.

Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers

Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers

P Mitchell et al. Biochem J. 1967 Aug.

Abstract

1. Pulsed acid-base titrations of suspensions of rat-liver mitochondria under anaerobic equilibrium conditions show fast and slow titration processes. 2. The fast process is the titration of the outer aqueous phase of the mitochondria, which is continuous with the suspension medium, and the slow process can be identified with the titration of the inner aqueous phase of the mitochondria, which is separated from the outer aqueous phase by the non-aqueous osmotic barrier or M phase of the cristae membrane system. 3. The buffering power of the outer and inner phases have been separately measured over a range of pH values. 4. The rate of titration of the inner aqueous phase under a known protonmotive force across the M phase has been characterized by an effective proton conductance coefficient, which, near pH7 and at 25 degrees , is only 0.45mumho/cm.(2) of the M-phase membrane. 5. The low effective proton conductance of the M phase will account quantitatively for the observed respiratory control in state 4, assuming that oxidoreduction and phosphorylation are coupled by a circulating proton current as required by the chemi-osmotic hypothesis. 6. The addition of 2,4-dinitrophenol (or carbonyl cyanide p-trifluoromethoxyphenylhydrazone) at normal uncoupling concentrations causes a large increase in the effective proton conductance of the M phase of the cristae membrane. 7. The increase of the effective proton conductance of the M phase by 2,4-dinitrophenol (or carbonyl cyanide p-trifluoromethoxyphenylhydrazone) will account quantitatively for the short-circuiting effect of the uncoupling agent on the proton current and for the observed rise of the rate of respiration to that characteristic of state 3 or higher.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochem J. 1964 Nov;93(2):322-30 - PubMed
    1. Nature. 1965 Oct 9;208(5006):147-51 - PubMed
    1. Fed Proc. 1966 May-Jun;25(3):933-6 - PubMed
    1. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445-502 - PubMed
    1. J Biol Chem. 1966 Oct 25;241(20):4588-99 - PubMed