Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1967 Sep;104(3):922-33.
doi: 10.1042/bj1040922.

Analysis of phosphate esters in plant material. Extraction and purification

Analysis of phosphate esters in plant material. Extraction and purification

F A Isherwood et al. Biochem J. 1967 Sep.

Abstract

1. A critical study was made of the quantitative extraction of nucleotide and sugar phosphates from plant tissue by either boiling aqueous ethanol or cold trichloroacetic acid. The effect of the extraction technique on the inactivation of the enzymes in the plant tissue and the possibility of adsorption of the phosphate esters on the cell wall were especially considered. 2. In the recommended method the plant tissue was frozen in liquid nitrogen, ground to a powder and then blended with cold aqueous trichloroacetic acid containing 8-hydroxyquinoline to prevent adsorption. 3. The extract contained large amounts of trichloroacetic acid, cations, chloride, sugars, amino acids, hydroxy organic acids, phytic acid, orthophosphoric acid and high-molecular-weight material including some phosphorus-containing compounds. All of these were removed as they were liable to interfere with the chromatographic or enzymic assay of the individual nucleotide or sugar phosphates. 4. The procedure was as follows: the last traces of trichloroacetic acid were extracted with ether after the solution had been passed through a column of Dowex AG 50 in the hydrogen form to remove all cations. High-molecular-weight compounds were removed by ultrafiltration and low-molecular-weight solutes by a two-stage chromatography on cellulose columns with organic solvents. In the first stage, sugars, amino acids, chloride and phytic acid were separated by using a basic solvent (propan-1-ol-water-aqueous ammonia) and, in the second stage, the organic acids and orthophosphoric acid were separated by using an acidic solvent (di-isopropyl ether-formic acid-2-methylpropan-2-ol-water). The final solution of nucleotide and sugar phosphates was substantially free from other solutes and was suitable for the detection of individual phosphate esters by either chromatography or enzymic assay. 5. The recovery of d-glucose 6-phosphate or adenosine 5'-triphosphate added to a trichloroacetic acid extract simulating that from peas and potatoes, and isolated according to the standard procedures, was better than 95%. Estimation of naturally occurring d-glucose 6-phosphate and adenosine 5'-triphosphate in the initial extract of peas and potatoes and in the final purified extract also indicated a recovery of about 95%. A similar estimation of uridine diphosphate glucose in potatoes showed that little or no breakdown occurred.

PubMed Disclaimer

References

    1. Biochem J. 1953 Dec;55(5):824-30 - PubMed
    1. Biochem J. 1966 Jun;99(3):521-33 - PubMed
    1. J Biol Chem. 1964 Jan;239:18-30 - PubMed
    1. Arch Biochem. 1949 Nov;24(1):9-24 - PubMed
    1. J Biol Chem. 1951 Nov;193(1):405-10 - PubMed