Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures
- PMID: 6069910
- PMCID: PMC1368064
- DOI: 10.1016/S0006-3495(67)86592-5
Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures
Abstract
A mathematical model is formulated for the development of a population of cells in which the individual members may grow and divide or die. A given cell is characterized by its age and volume, and these parameters are assumed to determine the rate of volume growth and the probability per unit time of division or death. The initial value problem is formulated, and it is shown that if cell growth rate is proportional to cell volume, then the volume distribution will not converge to a time-invariant shape without an added dispersive mechanism. Mathematical simplications which are possible for the special case of populations in the exponential phase or in the steady state are considered in some detail. Experimental volume distributions of mammalian cells in exponentially growing suspension cultures are analyzed, and growth rates and division probabilities are deduced. It is concluded that the cell volume growth rate is approximately proportional to cell volume and that the division probability increases with volume above a critical threshold. The effects on volume distribution of division into daughter cells of unequal volumes are examined in computer models.
Similar articles
-
Cell growth and division. II. Experimental studies of cell volume distributions in mammalian suspension cultures.Biophys J. 1967 Jul;7(4):353-64. doi: 10.1016/S0006-3495(67)86593-7. Biophys J. 1967. PMID: 4860485 Free PMC article.
-
Cell growth and division. 3. Conditions for balanced exponential growth in a mathematical model.Biophys J. 1968 Apr;8(4):431-44. doi: 10.1016/s0006-3495(68)86498-7. Biophys J. 1968. PMID: 5643273 Free PMC article.
-
Cell volume distributions reveal cell growth rates and division times.J Theor Biol. 2009 Mar 7;257(1):124-30. doi: 10.1016/j.jtbi.2008.10.031. Epub 2008 Nov 14. J Theor Biol. 2009. PMID: 19068221
-
Modeling growth kinetics and statistical distribution of oligometastases.Semin Radiat Oncol. 2006 Apr;16(2):111-9. doi: 10.1016/j.semradonc.2005.12.006. Semin Radiat Oncol. 2006. PMID: 16564446 Review.
-
Mathematical modelling of avascular-tumour growth.IMA J Math Appl Med Biol. 1997 Mar;14(1):39-69. IMA J Math Appl Med Biol. 1997. PMID: 9080687 Review.
Cited by
-
An effect of cell shape on apparent volume as determined with a coulter aperture.Biophys J. 1967 Nov;7(6):975-7. doi: 10.1016/S0006-3495(67)86634-7. Epub 2008 Dec 31. Biophys J. 1967. PMID: 19211010 Free PMC article. No abstract available.
-
A survey of structured cell population dynamics.Acta Biotheor. 1995 Jun;43(1-2):3-25. doi: 10.1007/BF00709430. Acta Biotheor. 1995. PMID: 7709687 Review.
-
Ontogenetic symmetry and asymmetry in energetics.J Math Biol. 2013 Mar;66(4-5):889-914. doi: 10.1007/s00285-012-0583-0. Epub 2012 Sep 9. J Math Biol. 2013. PMID: 22961058
-
Equations for the age structure of growing populations.Bull Math Biophys. 1968 Sep;30(3):427-35. doi: 10.1007/BF02476605. Bull Math Biophys. 1968. PMID: 5678195 No abstract available.
-
One Dimensional Reduction of a Renewal Equation for a Measure-Valued Function of Time Describing Population Dynamics.Acta Appl Math. 2021;175(1):12. doi: 10.1007/s10440-021-00440-3. Epub 2021 Oct 6. Acta Appl Math. 2021. PMID: 34720280 Free PMC article.
References
MeSH terms
LinkOut - more resources
Full Text Sources