Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jul;26(1):75-82.

Activation of calmodulin by various metal cations as a function of ionic radius

  • PMID: 6087119

Activation of calmodulin by various metal cations as a function of ionic radius

S H Chao et al. Mol Pharmacol. 1984 Jul.

Abstract

The active form of calmodulin is a Ca2+ . calmodulin complex. The purpose of this investigation was to determine whether other metal cations substitute for Ca2+ to activate calmodulin. Binding of Ca2+ resulted in an altered conformation of calmodulin with an increased quantum yield in its tyrosine fluorescence. Qualitatively similar results were obtained with Zn2+, Mn2+, Cd2+, Hg2+, Sr2+, Pb2+, Tb3+, Sm3+, and La3+. The relative extents of fluorescence enhancement by these cations were related to their ionic radii: all cations with ionic radii close to Ca2+ (0.99 A) increased tyrosine fluorescence, whereas those with different ionic radii were not effective, or much less so. The change in calmodulin conformation by the cations was confirmed by its altered electrophoretic mobility on polyacrylamide gels. Cations that change the conformation of calmodulin allow it to stimulate phosphodiesterase. The relative extents of stimulation of phosphodiesterase by cations were also related to their ionic radii. Finally, the ability of metal cations to inhibit Ca2+ binding was similarly related to their ionic radii. In general, the closer the radius of a metal cation was to that of Ca2+, the more effective was the cation to substitute for Ca2+. The range of effective ionic radii was approximately 1 +/- 0.2 A. Calmodulin-stimulated phosphodiesterase activity by the cations was reversed by trifluoperazine, an antagonist of calmodulin.

PubMed Disclaimer

Publication types

LinkOut - more resources