Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jun 19;23(13):2891-9.
doi: 10.1021/bi00308a007.

Structural and functional properties of calmodulin from the eukaryotic microorganism Dictyostelium discoideum

Structural and functional properties of calmodulin from the eukaryotic microorganism Dictyostelium discoideum

D R Marshak et al. Biochemistry. .

Abstract

Calmodulin was purified from the eukaryotic microorganism Dictyostelium discoideum and characterized in terms of its nearly complete primary structure and quantitative activator activity. The strategy for amino acid sequence analysis took advantage of the highly conserved structure of calmodulin and employed a new procedure for limited cleavage of calmodulin that uses a protease from mouse submaxillary gland. Fourteen amino acid sequence differences between Dictyostelium and bovine calmodulin were identified unequivocally, as well as an unmethylated lysine at residue 115 instead of N epsilon, N epsilon, N epsilon-trimethyllysine. Seven of the amino acid substitutions in Dictyostelium calmodulin are novel in that the residues at these positions are invariant in all calmodulin sequences previously examined, most notably an additional residue at the carboxy terminus. Comparison of the Dictyostelium calmodulin sequence with other calmodulin sequences shows that the region with the greatest extended sequence identity includes parts of the first and second structural domains and the interdomain region between domains 1 and 2. Dictyostelium calmodulin activated bovine brain cyclic nucleotide phosphodiesterase in a manner indistinguishable from that of bovine brain calmodulin. However, Dictyostelium calmodulin activated pea NAD kinase to a maximal level 4.6-fold greater than that produced by bovine brain calmodulin. This functional difference demonstrates the potential biological importance of the limited number of amino acid sequence differences between Dictyostelium calmodulin and other calmodulins and provides further insight into the structure, function, and evolution of the calmodulin family of proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources