Influence of the N-linked oligosaccharides on the biosynthesis, intracellular routing, and function of the human asialoglycoprotein receptor
- PMID: 6088499
Influence of the N-linked oligosaccharides on the biosynthesis, intracellular routing, and function of the human asialoglycoprotein receptor
Abstract
The human asialoglycoprotein receptor (ASGP-R) is a membrane glycoprotein of 46,000 Da which possesses two N-linked oligosaccharide chains (Schwartz, A. L., and Rup, D. (1983) J. Biol. Chem. 258, 11249-11255). In order to examine the role of N-linked oligosaccharides in the biosynthesis, intracellular routing, and function of the ASGP-R, we have used Hep G2 cells, which have a large number of ASGP-R, and two inhibitors of glycosylation, swainsonine and tunicamycin. In the presence of swainsonine, newly synthesized ASGP-R is a 43,000-Da species which is endoglycosidase H-sensitive, appears on the Hep G2 cell surface, and specifically binds 125I-asialoorosomucoid (ASOR). In the presence of tunicamycin newly synthesized ASGP-R is a 34,000-Da nonglycosylated species which appears on the Hep G2 cell surface where it specifically binds 125I-ASOR. There is no major effect on subsequent uptake and degradation of 125I-ASOR in cells whose ASGP-R was synthesized in the presence of tunicamycin. The turnover of ASGP-R synthesized in the presence of either swainsonine or tunicamycin is not significantly altered from that found for the normal 46,000-Da species. Thus, it appears that the two N-linked oligosaccharide chains of the human ASGP-R do not play a major role in the intracellular routing, turnover, or function of ASGP-R.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
