Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+
- PMID: 6088524
Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+
Abstract
Growth factors (alpha-thrombin and insulin) activate a Na+/H+ antiport in G0/G1-arrested Chinese hamster lung fibroblasts (CCL39). In this report, we have examined the influence of intracellular pH on this exchange activity, measured by initial rates of amiloride-sensitive 22Na+ uptake, in the absence and presence of growth factors. Our results indicate the following. 1) In quiescent as in mitogen-stimulated cells, Na+/H+ antiport is regulated by internal H+ in an allosteric way, whereas, in contrast, interactions with external H+ and Na+ obey simple saturation kinetics. 2) The growth factor-induced activation of Na+/H+ exchange, which, under physiological conditions, is responsible for a sustained cytoplasmic alkalinization, is due to an increased affinity for internal H+ (the apparent pK is shifted by approximately 0.3 pH unit towards alkaline pH values). Therefore, we propose that growth factors promote a conformational change of the Na+/H+ antiporter, possibly at the level of an internal modifier site(s).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
