Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Sep;74(3):920-8.
doi: 10.1172/JCI111510.

Regulation of pituitary gonadotropin-releasing hormone receptors by pulsatile gonadotropin-releasing hormone injections in male rats. Modulation by testosterone

Regulation of pituitary gonadotropin-releasing hormone receptors by pulsatile gonadotropin-releasing hormone injections in male rats. Modulation by testosterone

A Garcia et al. J Clin Invest. 1984 Sep.

Abstract

The pattern of the gonadotropin-releasing hormone (GnRH) stimulus is critically important in the regulation of pituitary gonadotropin secretion and continuous infusions down-regulate secretion while intermittent pulses maintain luteinizing hormone (LH) and follicle-stimulating hormone (FSH) responsiveness. We examined the effects of pulsatile GnRH administration on pituitary GnRH receptors (GnRH-R) and gonadotropin secretion in the presence of physiological concentrations of testosterone (T) to elucidate the mechanisms and sites of action of GnRH and T on the pituitary gonadotroph. Castrate male rats received one, two, or four testosterone (T) implants (serum T concentrations of 1.1, 2.4, and 5.2 ng/ml, respectively) to suppress endogenous GnRH secretion. Subsequently, intracarotid pulse injections of GnRH (5-250 ng/pulse) or saline in controls were given every 30 min for 48 h, after which gonadotropin responses and pituitary GnRH-R were measured. In control rats, the T implants prevented the rise in GnRH-R that was seen in castrates (empty implant--600 fmol/mg protein) and maintained receptors at the level that was present in intact animals (300 fmol/mg). Pulsatile GnRH administration increased GnRH-R in castrate T-implanted rats, but the response was dependent on the serum T concentration. With one T implant, increasing GnRH doses per pulse stimulated GnRH-R in a linear manner and the maximum receptor concentration (703 +/- 99 fmol/mg) was seen after the 250 ng GnRH dose. In the presence of two T implants, GnRH-R was maximal (705 +/- 45 fmol/mg) after the 25-ng dose and higher doses did not increase receptors above control values. With four T implants, GnRH doses of 5 ng induced a maximum response, 17-50 ng/pulse did not increase GnRH-R, but receptors were again increased by the 250-ng dose (633 +/- 86 fmol/mg). After 48 h of pulsatile GnRH administration there was no correlation between the number of GnRH-R and LH responses to GnRH. In rats with one or two T implants, LH responses were absent after all but the 250-ng doses. In contrast, LH responsiveness was not impaired in the presence of four implants. Thus, low dose GnRH pulses down-regulate LH secretion by an action at a post GnRH-R site, and this effect is regulated by testosterone. The results show that GnRH, given in a pulsatile manner, regulates its own receptor, and physiological increases in serum T produce a 50-fold increase in the sensitivity of GnRH-R stimulation by GnRH.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Science. 1978 Nov 10;202(4368):631-3 - PubMed
    1. Endocrinology. 1982 Jul;111(1):152-61 - PubMed
    1. J Clin Endocrinol Metab. 1979 Sep;49(3):472-4 - PubMed
    1. J Clin Endocrinol Metab. 1979 Oct;49(4):652-4 - PubMed
    1. J Clin Endocrinol Metab. 1979 Nov;49(5):712-8 - PubMed

Publication types