Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Sep 1;222(2):307-14.
doi: 10.1042/bj2220307.

Secretagogue-induced phosphoinositide metabolism in human leucocytes

Secretagogue-induced phosphoinositide metabolism in human leucocytes

R W Dougherty et al. Biochem J. .

Abstract

The relationship between receptor binding of the formylated peptide chemoattractant formylmethionylleucylphenylalanine (fMet-Leu-Phe), lysosomal enzyme secretion and metabolism of membrane phospholipids was evaluated in both human polymorphonuclear leucocytes (PMN) and the dimethyl sulphoxide (Me2SO)-stimulated human myelomonocytic HL-60 leukaemic cell line. In both cell types, exposure to fMet-Leu-Phe (100 nM) induced rapid lysosomal enzyme secretion (maximal release less than 30 s) and marked changes in the 32P-labelling of the inositol lipids phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns4P), phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] as well as phosphatidic acid (PtdA). Specifically, levels of [32P]PtdIns and [32P]PtdIns(4,5)P2 decreased rapidly (peak decrease at 10-15s), with a subsequent increase at 30 s and later. PtdIns4P and PtdA showed only an increase. In Me2SO-differentiated HL-60 cells prelabelled with [3H]inositol for 20 h, fMet-Leu-Phe caused a net increase in the cellular content of [3H]inositol phosphates, including a rapid increase in [3H]inositol 1,4,5-trisphosphate, suggesting that PtdIns(4,5)P2 breakdown occurs by a phospholipase C mechanism. Both lysosomal enzyme secretion and changes in phospholipid metabolism occur over the same agonist concentration range with a similar time course. Binding of [3H]fMet-Leu-Phe, although occurring over the same concentration range, exhibited markedly slower kinetics. Although depletion of extracellular Ca2+ had no effect on ligand-induced polyphosphoinositide turnover, PtdIns turnover, PtdA labelling and lysosomal enzyme secretion were severely curtailed. These studies demonstrate a receptor-mediated enhancement of phospholipid turnover that correlates with a specific biological response to fMet-Leu-Phe. Further, the results are consistent with the idea that phospholipase C-mediated degradation of PtdIns(4,5)P2, which results in the formation of inositol trisphosphate, is an early step in the stimulus-secretion coupling pathway of the neutrophil. The lack of correlation between these two responses and the equilibrium-binding condition suggests that either these parameters are responsive to the rate of ligand-receptor interaction or only fractional occupation is required for a full biological response.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochim Biophys Acta. 1975 Mar 25;415(1):81-47 - PubMed
    1. J Biol Chem. 1983 Dec 25;258(24):14816-22 - PubMed
    1. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2640-3 - PubMed
    1. J Reticuloendothel Soc. 1979 Dec;26(Suppl):701-9 - PubMed
    1. Biochemistry. 1980 May 27;19(11):2404-10 - PubMed

Publication types