Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Oct 5;178(4):815-34.
doi: 10.1016/0022-2836(84)90313-9.

Identification of sites required for repression of a silent mating type locus in yeast

Identification of sites required for repression of a silent mating type locus in yeast

J B Feldman et al. J Mol Biol. .

Abstract

There are three loci in the yeast Saccharomyces, each containing one of two possible genetic elements that can determine cell type. At one of these loci, MAT, this information is expressed to establish the mating type of the cell. At the other two loci, HML and HMR, this same information is phenotypically and transcriptionally silent, even though a large amount of identical sequence flanks MAT, HML and HMR coding regions. Transcriptional repression of HML and HMR requires the trans active gene products of four loci, designated variously as MAR or SIR, that are unlinked to each other or to MAT, HML or HMR. We have examined the phenotypic expression of a cloned, plasmid-borne copy of HML and of various deletion and insertion derivatives of this plasmid following their reintroduction into Mar+/Sir+ yeast strains. From these data, we have identified two sites flanking the locus, both of which are required for MAR/SIR repression of the locus. In addition, we demonstrate that each of these sites promotes autonomous replication in yeast. Abraham et al. (1984) have presented evidence demonstrating that a similar regulatory structure exists at the other silent locus, HMR. From an analysis of the sequences of these four regulatory sites, we have identified several specific sequences that may be involved in mediating repression of these loci and in promoting replication in yeast. These results are discussed in the context of potential models for the mechanism of regulation of the silent mating type loci.

PubMed Disclaimer

Publication types

LinkOut - more resources