Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1984 Aug;16(4):328-38.

Possible contribution of skeletal muscle buffers to enhanced anaerobic performance: a brief review

  • PMID: 6092820
Review

Possible contribution of skeletal muscle buffers to enhanced anaerobic performance: a brief review

W S Parkhouse et al. Med Sci Sports Exerc. 1984 Aug.

Abstract

Sprint-trained athletes demonstrate a remarkable ability to perform exercise which results in fatigue quickly. However, the mechanisms for these enhanced performance capabilities have not been fully elucidated. Elevation in glycolytic enzymes and increased fast-twitch fiber compositions which would result in an enhanced ability to produce ATP do not appear to be capable of accounting for the greatly enhanced performances. Associated with these performances are large accumulations of anaerobic end products which produce decrements in intracellular pH. Because intracellular pH decrements of sufficient magnitude have been shown to inhibit athletic performances, it has been postulated that sprint-trained athletes have an enhanced proton-sequestering capability which would ultimately alter the rate of pH decrement. This would delay the inhibition of the enzymatic and contractile machinery resulting in enhanced performances. The intracellular buffers that are capable of contributing to this enhanced buffering capacity were identified as inorganic phosphate, protein-bound histidine residues, the dipeptide carnosine, bicarbonate, and creatine phosphate. Thus, it has been suggested that increased buffer capacities within sprint-trained athletes may be a contributing factor to his/her enhanced anaerobic performance capacities.

PubMed Disclaimer

LinkOut - more resources