Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Dec 10;259(23):14354-6.

Hemoglobin. A biologic fenton reagent

  • PMID: 6094553
Free article

Hemoglobin. A biologic fenton reagent

S M Sadrzadeh et al. J Biol Chem. .
Free article

Abstract

Iron and iron compounds may facilitate hydroxyl-radical generation from activated oxygen species. Earlier work on the generation of this radical has been focused on simple, low-molecular-weight iron compounds. We hypothesized that free hemoglobin, like other iron-rich substances, might also mediate hydroxyl-radical generation. We find: 1) In the presence of a superoxide anion-generating system (hypoxanthine and xanthine oxidase), hemoglobin promotes hydroxyl-radical formation in a dose-dependent fashion. 2) This generation of hydroxyl radical is greatly decreased by prior oxidation of the hemoglobin, equilibration of hemoglobin with carbon monoxide, or addition of catalase, while added superoxide dismutase has little effect. Therefore, hydroxyl radical probably arises primarily via reaction between the ferrous heme iron and H2O2. 3) In further support of this, hydroxyl radical forms as readily upon the addition of H2O2 to hemoglobin. 4) Hemoglobin also increases hypoxanthine/xanthine oxidase-driven peroxidation of poly-unsaturated fatty acids such as arachidonic acid and human red cell membrane lipids. 5) The addition of sufficient haptoglobin (the plasma hemoglobin-binding protein) suppresses both hemoglobin-driven hydroxyl radical and malondialdehyde generation. Thus, free hemoglobin may be biologically hazardous, in part because it acts as a "Fenton" reagent, having the potential to catalyze hydroxyl-radical generation in areas of inflammation. Haptoglobin, which binds hemoglobin very tightly, blocks this through a presently unknown mechanism. An important physiologic function of haptoglobin may be prevention of such hemoglobin-mediated oxidation.

PubMed Disclaimer

Publication types

LinkOut - more resources