Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Sep-Oct;5(5):953-8.
doi: 10.1016/0196-9781(84)90122-0.

Effects of exercise training on brain opioid peptides and serum LH in female rats

Effects of exercise training on brain opioid peptides and serum LH in female rats

M J Blake et al. Peptides. 1984 Sep-Oct.

Abstract

In order to investigate the effects of long-term exercise training on brain endorphin systems, and the latter's possible effects on the hypothalamic-pituitary-gonadal axis, female Wistar rats were subjected to daily treadmill running. A sedentary control group was also employed. After 8 weeks of training, and just prior to sacrifice, one-half of each group received a final fatiguing bout of exercise. Thus the final four groups consisted of a trained-fatigued (TF), trained-nonfatigued (TN), control-fatigued (CF), and control-nonfatigued (CN) group. Regional brain levels of beta-endorphin (beta E), methionine enkephalin and leucine enkephalin (LE) were assayed with independent RIAs from the nucleus accumbens, cortex, caudate-putamen, septum, amygdala, anterior and posterior hypothalamus, substantia nigra and ventral tegmentum. Diestrus serum levels of luteinizing hormone (LH), follicle stimulating hormone and prolactin (PRL) were also determined. Fatiguing resulted in a decrease in serum LH levels as well as an increase in beta E content in the nucleus accumbens, and LE content in the ventral tegmentum. Finally, TF animals exhibited less LE in the amygdala than the TN rats. Taken together, these changes in brain endorphins may indicate an acute, fatigue-running modulation of the hypothalamic-pituitary-gonadal axis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources