Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Sep;12(2):119-38.
doi: 10.1016/0147-619x(84)90058-1.

A physical and functional analysis of Tn917, a Streptococcus transposon in the Tn3 family that functions in Bacillus

A physical and functional analysis of Tn917, a Streptococcus transposon in the Tn3 family that functions in Bacillus

J B Perkins et al. Plasmid. 1984 Sep.

Abstract

The erythromycin-resistance (Emr)-conferring transposon Tn917, first isolated in the genus Streptococcus, has in previous work been shown to function efficiently in the spore-forming species Bacillus subtilis, where it has been developed as a tool for identifying and studying sporulation genes. In the present work, a physical analysis of Tn917 was undertaken, including detailed restriction mapping, chemical DNA sequencing, heteroduplex studies, and Southern hybridization analysis, as a first step in understanding the genetic organization of this useful insertion element. The location and transcriptional orientation of the transposon-borne erm gene (the gene responsible for the Emr phenotype) have been determined, and a partial sequence of DNA 5' to the coding sequence of this gene indicates that its inducibility is probably the result of "translational attenuation," a mechanism known to be responsible for the regulation of at least two other gram-positive erm genes. Restriction mapping and heteroduplex analysis have revealed extensive homology between Tn917 and the Staphylococcus transposon Tn551, throughout virtually their entire lengths, and DNA sequencing studies have revealed a remarkably high degree of sequence correspondence within the terminal inverted repeats of Tn917, Tn551 and the gram-negative transposon Tn3. Tn917 was also shown to generate a 5-bp duplication upon insertion, as do Tn3 and Tn551 (and all of the other Tn3-related elements studied thus far), strengthening the conclusion that these three transposons are members of a highly dispersed family of related insertion elements which populate both gram-positive and gram-negative genera.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources