Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Dec 25;180(4):961-86.
doi: 10.1016/0022-2836(84)90266-3.

The role of palindromic and non-palindromic sequences in arresting DNA synthesis in vitro and in vivo

The role of palindromic and non-palindromic sequences in arresting DNA synthesis in vitro and in vivo

D T Weaver et al. J Mol Biol. .

Abstract

The nature of specific DNA sequences that arrest synthesis by mammalian DNA polymerase alpha in vitro was analyzed using circular, single-stranded M13 or phi X174 virion DNA templates annealed to a unique, terminally labeled, DNA primer. This method rigorously defined both the starting nucleotide position and the direction of synthesis, as well as making the amount of radioactivity proportional to the number rather than the length of nascent DNA chains. The precise nucleotide locations of arrest sites were determined over templates with complementary sequences by cloning unique DNA restriction fragments into M13 DNA and isolating virions containing either the Watson or Crick strand. Results were correlated with the locations of palindromic (self-complementary) sequences, repeated sequences, and repeated sequences with mirror-image orientation. Two classes of DNA synthesis arrest sites were identified, distinct in structure but equivalent in activity. Class I sites consisted of palindromic sequences that formed a stable hairpin structure in solution and arrested DNA polymerase on both complementary templates. The polymerase stopped precisely at the base of the duplex DNA stem, regardless of the direction from which the enzyme approached. Class II sites consisted of non-palindromic sequences that could not be explained by either secondary structure or sequence symmetry elements, and whose complementary sequence was not an arrest site. Size limits, orientation and some sequence specificity for arrest sites were suggested by the data. Arrest sites were also observed in vivo by mapping the locations of 3'-end-labeled nascent simian virus 40 DNA strands throughout the genome. Arrest sites closest to the region where termination of replication occurs were most pronounced, and the locations of 80% of the most prominent sites appeared to be recognized by alpha-polymerase on the same template in vitro. However, class I sites were not identified in vivo, suggesting that palindromic sequences do not form hairpin structures at replication forks.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources