Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Dec;3(6):447-62.

Ca2+-induced activation and irreversible inactivation of chloride channels in the perfused plasmalemma of Nitellopsis obtusa

  • PMID: 6099298

Ca2+-induced activation and irreversible inactivation of chloride channels in the perfused plasmalemma of Nitellopsis obtusa

A A Kataev et al. Gen Physiol Biophys. 1984 Dec.

Abstract

Experiments were carried out on the algal cells with removed tonoplast using both continuous intracellular perfusion and voltage clamp on plasmalemma. The transient plasmalemma current induced by depolarization disappeared upon perfusion with the Ca2+-chelating agent, EGTA, since the voltage-dependent calcium channels lost their ability to activate. Subsequent replacement of the perfusion medium containing EGTA by another with Ca2+ for clamped plasmalemma (-100 mV) induced an inward C1- current which showed both activation and inactivation. The maximal amplitude of the current at [C1-]in = 15 mmol/l (which is similar to that in native cells) was approximately twice that in electrically excited cell in vivo. The inactivation of C1 channels in the presence of internal Ca2+ was irreversible and had a time constant of 1-3 min. This supports our earlier suggestion (Lunevsky et al. 1983) that the inactivation of C1 channels in an intact cell (with a time constant of 1-3 s) is due to a decrease in Ca2+ concentration rather than to the activity of their own inactivation mechanism. The C1 channel selectivity sequence was following: C1- much greater than CH3SO-4 approximately equal to K+ much greater than SO2-4 (PK/PSO4 approximately 10). Activation of one half the channels occurs at a Ca2+ concentration of 2 X 10(-5) mol/l. Sr2+ also (though to a lesser extent) activated C1 channels but had to be present in a much more higher concentration than Ca2+. Mg2+ and Ba2+ appeared ineffective. Ca2+ activation did not, apparently, require participation of water-soluble intermediator including ATP. Thus, C1 channel functioning is controlled by Ca2+-, Sr2+-sensitive elements of the subplasmalemma cytoskeleton.

PubMed Disclaimer

LinkOut - more resources