Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Jan;212(1):91-6.

Effects of norlaudanosolinecarboxylic acids on enzymes of catecholamine metabolism

  • PMID: 6101345

Effects of norlaudanosolinecarboxylic acids on enzymes of catecholamine metabolism

C J Coscia et al. J Pharmacol Exp Ther. 1980 Jan.

Abstract

Enzymes involved in catecholamine metabolism were assayed in the presence of a new class of naturally occurring tetrahydroisoquinoline alkaloids, the norlaudanosolinecarboxylic acids (NLCAs). NLCAs inhibited tyrosine hydroxylase noncompetitively with respect to its substrate, tyrosine and the cofactor, 6-methyltetrahydropterin (NLCA Kj = 4 x 10(-4) M; 3',4'-deoxynorlaudanosolinecarboxylic acid (DNLCA) Kj = 1.5 x 10(-4) M). Adrenal dopamine-beta-hydroxylase was also inhibited by NLCAs [3'O-methylnorlaudanosolinecarboxylic acid (MNLCA) Kj = 1.2 x 10(-4) M] and NLCA is a competitive inhibitor of norepinephrine methylation by hepatic catechol-O-methyltransferase (NLCA Kj = 5.6 x 10(-5) M). While a slight reduction of rat adrenal monoamine oxidase by MNLCA was also observed, NLCA did not affect the oxidation of tyrosine by D-amino acid oxidase. Kinetic patterns of tyrosine aminotransferase and aromatic amono acid decarboxylase from rat liver were not altered by addition of 1 to 10 x 10(-5) M NLCA or its 3'-O-methyl ether (MNLCA). In vivo studies of brain tyrosine metabolism in mouse neonates corroborated results on the in vitro effect of DNLCA on tyrosine hydroxylase. The potential of high-pressure liquid chromatography was demonstrated in both enzyme assays and radiometric studies of in vivo metabolism.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms