Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1981:32:413-25.
doi: 10.1146/annurev.me.32.020181.002213.

Dietary precursors and brain neurotransmitter formation

Review

Dietary precursors and brain neurotransmitter formation

J D Fernstrom. Annu Rev Med. 1981.

Abstract

The rates of synthesis of serotonin, acetylcholine, and, under certain circumstances, dopamine and norepinephrine by brain neurons depend considerably on the availability to brain of the respective dietary precursors. This precursor dependence seems to be related to the fact that the enzyme catalyzing the rate-limiting step in the synthetic pathway for each transmitter is unsaturated with substrate at normal brain concentrations. Moreover, brain levels of the individual precursors rise following oral or parenteral administration of the pure compound or the ingestion of certain foods. Precursor-induced increases in brain transmitter formation seem to influence a variety of brain functions and behaviors, which suggests that transmitter release has been enhanced. It now appears that these precursors may become useful as therapeutic agents for the treatment of selected disease states, wherein the disease is related to reduced release of transmitter. Examples of Parkinson's disease (tyrosine), myasthenia gravis (choline or phosphatidylcholine), depression (tyrosine), and possibly abnormal appetite (tryptophan). Perhaps the future will bring the identification of still other neurotransmitters, whose rates of synthesis depend on precursor availability. Two potential candidates for which some information is already available are glycine (a spinal cord transmitter) and the prostaglandins (some of which may function as neuromodulators or transmitters) (48, 49). Each time a new precursor-product relationship is described, an opportunity becomes available for determining whether the precursor might be useful in treating disease states related to reduced transmitter release by neurons. The opportunities are worth exploring, since the use of a natural dietary constituent, even in purified form, is likely to produce fewer unwanted side-effects than are seen following administration of synthetic drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources