Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Aug;49(2):326-36.
doi: 10.1161/01.res.49.2.326.

Characterization of [3H](+/-)carazolol binding to beta-adrenergic receptors. Application to study of beta-adrenergic receptor subtypes in canine ventricular myocardium and lung

Free article

Characterization of [3H](+/-)carazolol binding to beta-adrenergic receptors. Application to study of beta-adrenergic receptor subtypes in canine ventricular myocardium and lung

A S Manalan et al. Circ Res. 1981 Aug.
Free article

Abstract

[3H](+/-)Carazolol, a newly available beta-adrenergic receptor antagonist, can be used to characterize beta-adrenergic receptor subtypes present in membrane vesicles derived from canine ventricular myocardium and canine lung. [3H](+/-)Carazolol binding is saturable, of high affinity, and is displaceable by beta-adrenergic agents in accordance with their known pharmacological potencies. The interaction of carazolol with beta-adrenergic receptors is stereospecific; the (-) stereoisomer demonstrates greater potency than the (+) stereoisomer. Kinetic analysis of [3H](+/-)carazolol interaction with beta-adrenergic receptors suggests that presence of two phases of interaction, consistent with initial rapidly reversible "low" affinity association of ligand with receptor, followed by isomerization to form a high affinity, slowly reversible complex. Through use of a [3H](+/-)carazolol binding assay based on the high affinity complex, pharmacological specificities of beta-adrenergic receptor populations of canine myocardium and lung were quantified. Analysis using computer-assisted techniques suggests a beta 1/beta 2 receptor ratio of approximately 85%/15% for canine myocardium and 5%/95% for canine lung. In the absence of added guanine nucleotides, comparison of potencies of beta-adrenergic agonists in the two membrane systems suggests significant beta 2 selectivity of l-isoproterenol and l-epinephrine, and non-selectivity of norepinephrine. In the presence of saturating levels of guanine nucleotides, comparison of agonist potencies confirms the non-selectivity of l-isoproterenol and l-epinephrine, and beta 1 selectivity of norepinephrine. These results demonstrate that the state of guanine nucleotide regulation of receptors should be defined when examining agonist selectivities for beta-adrenergic receptor subtypes in vitro.

PubMed Disclaimer

Publication types

LinkOut - more resources