Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Nov 10;256(21):11112-6.

Inhibition of coupling factor B activity by cadmium ion, arsenite-2,3-dimercaptopropanol, and phenylarsine oxide, and preferential reactivation by dithiols

  • PMID: 6116711
Free article

Inhibition of coupling factor B activity by cadmium ion, arsenite-2,3-dimercaptopropanol, and phenylarsine oxide, and preferential reactivation by dithiols

S Joshi et al. J Biol Chem. .
Free article

Abstract

Coupling factor B activity was measured by the stimulation of the ATP-driven NAD+ reduction by succinate or the 32Pi-ATP exchange activity of Factor B-depleted submitochondrial particles. Half-maximal coupling activity was inhibited by 30 microM cadmium, 5 microM phenylarsine oxide, or 0.3 mM arsenite-2,3-dimercaptopropanol. The inhibition was relieved by slight excess of dithiol but not by a 10-fold molar excess of 2-mercaptoethanol. Inhibition of coupling activity by phenylarsine oxide or cadmium was not due to interference in binding of Factor B to depleted particles. Isolated Factor B binds phenylarsine oxide resulting in loss of ability to stimulate depleted submitochondrial particles. The inhibition was largely overcome by dithiol but not by monothiols. The residual coupling activity of depleted submitochondrial particles was highly resistant to cadmium or arsenical. Moreover, binding of arsenical to the depleted particles per se, did not result in inhibition of Factor B-stimulated activity. Furthermore, the addition of phenylarsine oxide to H+-ATPase resulted in loss of Pi-ATP exchange and stimulation of oligomycin-sensitive ATPase activities. Both effects were further potentiated by 2-mercaptoethanol and reversed by dithiols. These effects parallel uncoupling of oxidative phosphorylation in mitochondria by these inhibitors and point to Factor B as the probable component sensitive to these inhibitors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources