Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982;71(3):495-500.
doi: 10.1016/0305-0491(82)90414-x.

The mitochondrial adenosine triphosphatase of Acanthamoeba castellanii. Partial characterization and changes in activity during exponential growth

The mitochondrial adenosine triphosphatase of Acanthamoeba castellanii. Partial characterization and changes in activity during exponential growth

S W Edwards et al. Comp Biochem Physiol B. 1982.

Abstract

1. The mitochondrial adenosine triphosphatase (ATPase) of Acanthamoeba castellanii is Mg2+-requiring (optimum cation: ATP ratio of 1.5) and has two pH optima of activity (at pH 6.6 and 8.1). 2. ATPase activity of submitochondrial particles is effectively inhibited by twelve different inhibitors of energy conservation suggesting similarities in inhibitor-binding sites to other previously characterized complexes. 3. Gel filtration by passage through Sephadex G-50 increases ATPase activity of submitochondrial particles between 1.5 and 3.5 fold indicating the presence of a low molecular weight inhibitor protein. 4. After removal of the inhibitor protein, sensitivity to inhibitors of energy conservation decreases by between 1.5 and 14 fold. Crude F1-inhibitor preparations from A. castellanii, Schizosaccharomyces pombe, Tetrahymena pyriformis and bovine heart also inhibit ATPase activity. 5. Large variations in ATPase activity, F1-inhibitor protein activity, and amounts of immunologically-determined ATPase protein were observed during exponential growth, and the correlation between changes in these measurements is discussed. 6. The results are also discussed highlighting the similarities between the mitochondrial ATPase of A. castellanii and other mitochondrial ATPases.

PubMed Disclaimer

Similar articles

Publication types