Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jun 24;704(3):414-21.
doi: 10.1016/0167-4838(82)90062-0.

Regulation and biochemical characterization of the glutamine synthetase of azotobacter vinelandii

Regulation and biochemical characterization of the glutamine synthetase of azotobacter vinelandii

J E Lepo et al. Biochim Biophys Acta. .

Abstract

We have investigated the regulation of the activity and synthesis of the glutamine synthetase (l-glutamate:ammonia ligase (ADP-forming), EC (6.3.1.2) of Azotobacter vinelandii. Synthesis of the enzyme was not repressed by NH+4 and/or a number of amino acids in the growth medium; however, biosynthetic activity was rapidly lost through adenylylation in response to ammonium ion. The enzyme could be prepared as a 'relaxed, divalent-cation-free form which was catalytically inactive. The 'taut', active form could be restored with 1-5 mM Mg2+, Mn2+, Ca2+ or CO2+ and taut-vs.-relaxed difference spectra unique to each divalent cation were generated. Mg2+ and CO2+ each supported biosynthetic catalysis, but with different substrate Km and Vmax values. L-Alanine, glycine and L-aspartate were the most potent of several inhibitors of the biosynthetic and the gamma-glutamyl transferase activities; only aspartate and AMP behaved differentially toward glutamine synthetase adenylylation state: the more highly adenylylated enzyme was more severely affected. Any two of alanine, glycine or AMP showed cumulative inhibition, while the inhibitory effects of groups of three effectors were not cumulative. The Co2+-supported biosynthetic activity of Al vinelandii glutamine synthetase was markedly less sensitive to inhibition my glycine and alanine and was stimulated up to 50% by 1-10 mM aspartate.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources