Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Nov 15;31(22):3657-62.
doi: 10.1016/0006-2952(82)90591-3.

Dual effect of N-ethylmaleimide on agonist-mediated conformational changes of beta-adrenergic receptors

Dual effect of N-ethylmaleimide on agonist-mediated conformational changes of beta-adrenergic receptors

C Andre et al. Biochem Pharmacol. .

Abstract

Beta-Adrenergic agonists cause adenylate cyclase activation via a conformational change of their receptor. This was earlier revealed by the use of N-ethylmaleimide as a structural probe: agonist-bound receptors are rapidly inactivated by 0.1 mM N-ethylmaleimide while free and antagonist-bound receptors remain unaffected. Furthermore, the beta-adrenergic receptors only change conformation when coupled to the guanine nucleotide regulatory component of the adenylate cyclase system. It is shown in this report that treatment of turkey erythrocyte membranes with the sulphydryl-specific agent 2,2'-dinitro-5,5'-dithiodibenzoic acid and elevated concentrations of N-ethylmaleimide (1-10 mM) do not affect the total receptor number, but prevent the ability of beta-adrenergic agonists to mediate conformational changes. This effect is mimicked by GTP. These three compounds cause also a two- to four-fold decrease in agonist affinity. Both phenomena may be explained by the ability of the reagents to prevent, and of GTP to reverse, the functional coupling between the receptors and the regulatory component of the adenylate cyclase system. Removal of Mg2+ from the incubation medium (i.e. presence of 1 mM EDTA) produces a similar decrease in agonist affinity, but does not impair the ability of agonist/N-ethylmaleimide to inactivate the receptors. This suggests that Mg2+ increases the agonist affinity for the receptor-regulatory component complex, but is not required for its formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources