Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1983 Mar:49:43-50.
doi: 10.1289/ehp.834943.

Acetylation, deacetylation and acyltransfer

Review

Acetylation, deacetylation and acyltransfer

C M King et al. Environ Health Perspect. 1983 Mar.

Abstract

N-Substituted aromatic compounds can be metabolized in most species to N-acetylated derivatives that are themselves subject to further enzymatic transformations, including hydrolysis and N,O-acyltransfer. These proceses can either potentiate or ameliorate the biological responses to these N-substituted derivatives. Decreasing the levels of metabolites, such as arylhydroxylamines may, in some systems, reduce the probability of eliciting adverse biological effects. In others, arylhydroxamic acids produced by the acetylation of arylhydroxylamines may increase their potential for metabolic activation by N,O-acyltransfer. In the rabbit, rat and perhaps other species, the acetyl CoA-dependent N-acetyltransferase is also capable of activating arylhydroxamic acids by N-O-acyltransfer. These cytosolic organotriphosphate ester-resistant enzymes can utilize arylhydroxamic acid as a donor of the acetyl moiety in the acetyl transferase reaction and apparently are capable of activating arylhydroxamic acids because of their ability to O-acetylate the arylhydroxlamine. In mice, N-acetyltransferase and N,O-acetyltransferase seem not to exhibit this relationship. Enzymes from the microsomes of a number of species are also capable of activating arylhydroxamic acids. The particulate-bound enzymes are organotriphosphate ester-sensitive deacylases that are unable to form nucleic acid adducts on incubation with N-methoxy-N-acetylaminoarenes, substrates that are not capable of activation by N,O-acyltransfer. Thus, depending on the specificity of the enzymes involved, N-substituted aromatic compounds may be activated by N,O-acyltransfer during both the acetylation and deacylation process. The influence of this activation in the carcinogenic process is the object of continuing investigation.

PubMed Disclaimer

References

    1. Cancer Res. 1966 Jul;26(7):1390-6 - PubMed
    1. Biochem J. 1966 Sep;100(3):745-53 - PubMed
    1. Science. 1968 Mar 22;159(3821):1351-3 - PubMed
    1. Proc Soc Exp Biol Med. 1968 Oct;129(1):268-73 - PubMed
    1. Biochem J. 1971 Jun;123(2):287-9 - PubMed

Publication types

LinkOut - more resources