pH dependence of the Coxiella burnetii glutamate transport system
- PMID: 6132912
- PMCID: PMC217506
- DOI: 10.1128/jb.154.2.598-603.1983
pH dependence of the Coxiella burnetii glutamate transport system
Abstract
The transport of glutamate, apparently a primary energy source for Coxiella burnetii, has been examined. C. burnetii is shown to possess a pH-dependent active transport system for L-glutamate with an apparent Kt of 61.1 microM and Vmax of 8.33 pmol/s per mg at pH 3.5. Both L-glutamine and L-asparagine competitively inhibited transport of glutamate, but D-glutamate, L-aspartate, L-glutamate-gamma-methyl ester, methionine sulfoximine, or alpha-ketoglutarate did not compete. This transport system is both temperature and energy dependent. Uptake of glutamate is highly sensitive to uncouplers of oxidative phosphorylation such as 2,4-dinitrophenol and carbonyl cyanide-m-chlorophenyl hydrazone that decrease the proton motive force across the cytoplasmic membrane. ATPase inhibitors such as dicyclohexylcarbodiimide or metabolic poisons such as KCN, NaF, or arsenite were much less effective as inhibitors of glutamate transport. Uptake of glutamate did not appear to be coupled to Na+ symport as in Escherichia coli since no monovalent cation requirement could be demonstrated. Instead, the Vmax of glutamate transport showed good correlation with the transmembrane pH gradient (delta pH). From these results, we propose that L-glutamate transport by C. burnetii is energized via a proton motive force.
Similar articles
-
Active transport of proline by Coxiella burnetii.J Gen Microbiol. 1984 Nov;130(11):2857-63. doi: 10.1099/00221287-130-11-2857. J Gen Microbiol. 1984. PMID: 6549343
-
Estimation of the cytoplasmic pH of Coxiella burnetii and effect of substrate oxidation on proton motive force.J Bacteriol. 1983 May;154(2):591-7. doi: 10.1128/jb.154.2.591-597.1983. J Bacteriol. 1983. PMID: 6302078 Free PMC article.
-
Stability of the adenosine 5'-triphosphate pool in Coxiella burnetii: influence of pH and substrate.J Bacteriol. 1981 Nov;148(2):419-25. doi: 10.1128/jb.148.2.419-425.1981. J Bacteriol. 1981. PMID: 6117546 Free PMC article.
-
Active transport of Ca2+ in bacteria: bioenergetics and function.Mol Cell Biochem. 1981 Apr 27;36(2):65-84. doi: 10.1007/BF02354906. Mol Cell Biochem. 1981. PMID: 6113540 Review.
-
Energy conservation in acidophilic bacteria.Microbiol Rev. 1983 Dec;47(4):579-95. doi: 10.1128/mr.47.4.579-595.1983. Microbiol Rev. 1983. PMID: 6363899 Free PMC article. Review. No abstract available.
Cited by
-
Complementation of Arginine Auxotrophy for Genetic Transformation of Coxiella burnetii by Use of a Defined Axenic Medium.Appl Environ Microbiol. 2016 May 2;82(10):3042-51. doi: 10.1128/AEM.00261-16. Print 2016 May 15. Appl Environ Microbiol. 2016. PMID: 26969695 Free PMC article.
-
Multiple Substrate Usage of Coxiella burnetii to Feed a Bipartite Metabolic Network.Front Cell Infect Microbiol. 2017 Jun 29;7:285. doi: 10.3389/fcimb.2017.00285. eCollection 2017. Front Cell Infect Microbiol. 2017. PMID: 28706879 Free PMC article.
-
Genome sequence of Coxiella burnetii strain Namibia.Stand Genomic Sci. 2014 Dec 29;9:22. doi: 10.1186/1944-3277-9-22. eCollection 2014. Stand Genomic Sci. 2014. PMID: 25593636 Free PMC article.
-
Cloning and functional expression of the Coxiella burnetii citrate synthase gene in Escherichia coli.Infect Immun. 1987 Apr;55(4):848-55. doi: 10.1128/iai.55.4.848-855.1987. Infect Immun. 1987. PMID: 3104207 Free PMC article.
-
Complete genome sequence of the Q-fever pathogen Coxiella burnetii.Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5455-60. doi: 10.1073/pnas.0931379100. Epub 2003 Apr 18. Proc Natl Acad Sci U S A. 2003. PMID: 12704232 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources