Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982;8(6):371-84.

Enhancement of depolarization-dependent neurosecretion from PC12 cells by forskolin-induced elevation of cyclic AMP

  • PMID: 6136536

Enhancement of depolarization-dependent neurosecretion from PC12 cells by forskolin-induced elevation of cyclic AMP

C S Rabe et al. J Cyclic Nucleotide Res. 1982.

Abstract

The effects of elevated intracellular cyclic AMP on the release of neurotransmitters was studied using the clonal pheochromocytoma cell line, PC12, and forskolin, a direct activator of adenylate cyclase. Intracellular cyclic AMP concentrations ranging from 8 to 400 times basal levels were achieved with 0.1 to 100 uM forskolin. Unstimulated release of neurotransmitters was unchanged by any concentration of forskolin. However, K+-stimulated release of both norepinephrine (NE) and acetylcholine was enhanced by 0.1 to 10 uM forskolin. Release of NE elicited by depolarization with carbachol and veratridine also was enhanced by 1 uM forskolin. Enhancement of release was reversed by higher concentrations of forskolin, especially in the presence of a phosphodiesterase inhibitor (RO 20-1724) which caused very large increases in cyclic AMP content. The enhancement of transmitter release from the PC12 cells occurred without concomitant changes in agonist-stimulated ion flux through the acetylcholine receptor ion channel, or in depolarization-dependent uptake of 45Ca++. Thus, increasing the cyclic AMP content of PC12 cells fails to initiate neurosecretion but appears to facilitate some element in the secretion process subsequent to Ca++ influx.

PubMed Disclaimer

Publication types

LinkOut - more resources