Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Sep;26(9):1300-7.
doi: 10.1021/jm00363a015.

A polymeric drug for treatment of inflammatory bowel disease

A polymeric drug for treatment of inflammatory bowel disease

J P Brown et al. J Med Chem. 1983 Sep.

Abstract

Sulfasalazine (SASP) consists of salicylic acid azo linked at the 5-position to a pyridine-containing sulfonamide. This drug, currently used in inflammatory bowel disease treatment, is reductively cleaved by anaerobic bacteria in the lower bowel to 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP). Recent reports indicate that 5-ASA is the active therapeutic moiety and that SP is responsible for a variety of adverse clinical side effects. Water-soluble polymer 7, which contains salicylate residues azo linked at the 5-position to an inert polymer backbone, has been synthesized for the site-specific reductive release of 5-ASA in the lower bowel. Preparations of 7 deliver (chemical reduction) greater than 1.96 mmol of 5-ASA/g of polymer. In vitro studies with the polymer in anaerobic rat cecal bacteria demonstrated a reduction rate of approximately 1 mu equiv of azo bond h-1 (mL of cecal content)-1. A pharmacokinetic comparison of polymer and SASP showed similar deliveries of 5-ASA and metabolites to the lower bowel, blood, and urine of orally dosed rats. Polymer 7 proved more active than SASP or 5-ASA in the guinea pig ulcerative colitis model. Potential therapeutic advantages of 7 include nonabsorption/nonmetabolism in the small intestine, direct 5-ASA release at the disease site, and nonabsorption/nonmetabolism of the reduction-released carrier polymer.

PubMed Disclaimer