Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Sep 27;22(20):4676-85.
doi: 10.1021/bi00289a011.

Vanadate binding to the gastric H,K-ATPase and inhibition of the enzyme's catalytic and transport activities

Vanadate binding to the gastric H,K-ATPase and inhibition of the enzyme's catalytic and transport activities

L D Faller et al. Biochemistry. .

Abstract

Vanadate inhibition of the catalytic and transport activities of the gastric magnesium-dependent, hydrogen ion transporting, and potassium-stimulated adenosinetriphosphatase (EC 3.6.1.3) (H,K-ATPase) has been studied. The principal experiment observations are the following: (1) Inhibition of adenosine 5'-triphosphate (ATP) hydrolysis is biphasic. Vanadate binding with a stoichiometry of 1.5 nmol mg-1 approximately halves K+-stimulated ATPase activity at physiological temperature. The remaining activity is inhibited by binding an additional 1.5 nmol mg-1 vanadate with lower apparent ions bind specifically to gastric vesicles with two affinities. Vanadate binding in the presence of nucleotide is compatible with competition for the kinetically defined high-affinity and low-affinity ATP sites. (3) Vanadate inhibits phosphoenzyme formation and the K+-stimulated p-nitrophenyl phosphatase activity of the enzyme monophasically. A maximum of 1.5 nmol mg-1 acid-stable phosphoenzyme is formed. The half-time for vanadate dissociation from the site that inhibits p-nitrophenyl phosphate hydrolysis is 5 min (4) At most, 3 nmol mg-1 vanadate is required to inhibit proton transport. The simplest interpretation of the data is that vanadate inhibits the H,K-ATPase by binding competitively with ATP at two catalytic sites. Different catalytic mechanisms at the high-affinity and low-affinity sites are suggested by the different stoichiometries found for vanadate binding and phosphoenzyme formation.

PubMed Disclaimer

Publication types

LinkOut - more resources